8,725 research outputs found
Effect of Dietary Components on Larval Life History Characteristics in the Medfly (Ceratitis capitata: Diptera, Tephritidae)
Background: The ability to respond to heterogenous nutritional resources is an important factor in the adaptive radiation of insects such as the highly polyphagous Medfly. Here we examined the breadth of the Medfly’s capacity to respond to different developmental conditions, by experimentally altering diet components as a proxy for host quality and novelty. Methodology/Principal Findings: We tested responses of larval life history to diets containing protein and carbohydrate components found in and outside the natural host range of this species. A 40% reduction in the quantity of protein caused a significant increase in egg to adult mortality by 26.5%±6% in comparison to the standard baseline diet. Proteins and carbohydrates had differential effects on larval versus pupal development and survival. Addition of a novel protein source, casein (i.e. milk protein), to the diet increased larval mortality by 19.4%±3% and also lengthened the duration of larval development by 1.93±0.5 days in comparison to the standard diet. Alteration of dietary carbohydrate, by replacing the baseline starch with simple sugars, increased mortality specifically within the pupal stage (by 28.2%±8% and 26.2%±9% for glucose and maltose diets, respectively). Development in the presence of the novel carbohydrate lactose (milk sugar) was successful, though on this diet there was a decrease of 29.8±1.6 µg in mean pupal weight in comparison to pupae reared on the baseline diet. Conclusions: The results confirm that laboratory reared Medfly retain the ability to survive development through a wide range of fluctuations in the nutritional environment. We highlight new facets of the responses of different stages of holometabolous life histories to key dietary components. The results are relevant to colonisation scenarios and key to the biology of this highly invasive species
Search for the Elusive Higgs Boson Using Jet Structure at LHC
We consider the production of a light non-standard model Higgs boson of order
100~\GEV with an associated boson at CERN Large Hadron Collider. We focus
on an interesting scenario that, the Higgs boson decays predominately into two
light scalars with mass of few GeV which sequently decay into four
gluons, i.e. . Since is much lighter than the Higgs
boson, it will be highly boosted and its decay products, the two gluons, will
move close to each other, resulting in a single jet for decay in the
detector. By using electromagnetic calorimeter-based and jet substructure
analyses, we show in two cases of different masses that it is quite
promising to extract the signal of Higgs boson out of large QCD background.Comment: 20 pages, 7 figure
Computer simulation of syringomyelia in dogs
Syringomyelia is a pathological condition in which fluid-filled cavities (syringes) form and expand in the spinal cord. Syringomyelia is often linked with obstruction of the craniocervical junction and a Chiari malformation, which is similar in both humans and animals. Some brachycephalic toy breed dogs such as Cavalier King Charles Spaniels (CKCS) are particularly predisposed. The exact mechanism of the formation of syringomyelia is undetermined and consequently with the lack of clinical explanation, engineers and mathematicians have resorted to computer models to identify possible physical mechanisms that can lead to syringes. We developed a computer model of the spinal cavity of a CKCS suffering from a large syrinx. The model was excited at the cranial end to simulate the movement of the cerebrospinal fluid (CSF) and the spinal cord due to the shift of blood volume in the cranium related to the cardiac cycle. To simulate the normal condition, the movement was prescribed to the CSF. To simulate the pathological condition, the movement of CSF was blocked
QCD corrections to plus -boson production at the LHC
The associated production at the LHC is an important process in
investigating the color-octet mechanism of non-relativistic QCD in describing
the processes involving heavy quarkonium. We calculate the next-to-leading
order (NLO) QCD corrections to the associated production at the
LHC within the factorization formalism of nonrelativistic QCD, and provide the
theoretical predictions for the distribution of the transverse
momentum. Our results show that the differential cross section at the
leading-order is significantly enhanced by the NLO QCD corrections. We conclude
that the LHC has the potential to verify the color-octet mechanism by measuring
the production events.Comment: 14 page revtex, 5 eps figures, to appear in JHEP. fig5 and the
corresponding analysis are correcte
A Characterization of Scale Invariant Responses in Enzymatic Networks
An ubiquitous property of biological sensory systems is adaptation: a step
increase in stimulus triggers an initial change in a biochemical or
physiological response, followed by a more gradual relaxation toward a basal,
pre-stimulus level. Adaptation helps maintain essential variables within
acceptable bounds and allows organisms to readjust themselves to an optimum and
non-saturating sensitivity range when faced with a prolonged change in their
environment. Recently, it was shown theoretically and experimentally that many
adapting systems, both at the organism and single-cell level, enjoy a
remarkable additional feature: scale invariance, meaning that the initial,
transient behavior remains (approximately) the same even when the background
signal level is scaled. In this work, we set out to investigate under what
conditions a broadly used model of biochemical enzymatic networks will exhibit
scale-invariant behavior. An exhaustive computational study led us to discover
a new property of surprising simplicity and generality, uniform linearizations
with fast output (ULFO), whose validity we show is both necessary and
sufficient for scale invariance of enzymatic networks. Based on this study, we
go on to develop a mathematical explanation of how ULFO results in scale
invariance. Our work provides a surprisingly consistent, simple, and general
framework for understanding this phenomenon, and results in concrete
experimental predictions
How and When Socially Entrepreneurial Nonprofit Organizations Benefit From Adopting Social Alliance Management Routines to Manage Social Alliances?
Social alliance is defined as the collaboration between for-profit and nonprofit organizations. Building on the insights derived from the resource-based theory, we develop a conceptual framework to explain how socially entrepreneurial nonprofit organizations (SENPOs) can improve their social alliance performance by adopting strategic alliance management routines. We test our framework using the data collected from 203 UK-based SENPOs in the context of cause-related marketing campaign-derived social alliances. Our results confirm a positive relationship between social alliance management routines and social alliance performance. We also find that relational mechanisms, such as mutual trust, relational embeddedness, and relational commitment, mediate the relationship between social alliance management routines and social alliance performance. Moreover, our findings suggest that different types of social alliance motivation can influence the impact of social alliance management routines on different types of the relational mechanisms. In general, we demonstrate that SENPOs can benefit from adopting social alliance management routines and, in addition, highlight how and when the social alliance management routines–social alliance performance relationship might be shaped. Our study offers important academic and managerial implications, and points out future research directions
Measurement of GEp/GMp in ep -> ep to Q2 = 5.6 GeV2
The ratio of the electric and magnetic form factors of the proton, GEp/GMp,
was measured at the Thomas Jefferson National Accelerator Facility (JLab) using
the recoil polarization technique. The ratio of the form factors is directly
proportional to the ratio of the transverse to longitudinal components of the
polarization of the recoil proton in the elastic
reaction. The new data presented in this article span the range 3.5 < Q2 < 5.6
GeV2 and are well described by a linear Q2 fit. Also, the ratio QF2p/F1p
reaches a constant value above Q2=2 GeV2.Comment: 6 pages, 4 figures Added two names to the main author lis
Exploring the Higgs Portal with 10/fb at the LHC
We consider the impact of new exotic colored and/or charged matter
interacting through the Higgs portal on Standard Model Higgs boson searches at
the LHC. Such Higgs portal couplings can induce shifts in the effective
Higgs-gluon-gluon and Higgs-photon-photon couplings, thus modifying the Higgs
production and decay patterns. We consider two possible interpretations of the
current LHC Higgs searches based on ~ 5/fb of data at each detector: 1) a Higgs
boson in the mass range (124-126) GeV and 2) a `hidden' heavy Higgs boson which
is underproduced due to the suppression of its gluon fusion production cross
section. We first perform a model independent analysis of the allowed sizes of
such shifts in light of the current LHC data. As a class of possible candidates
for new physics which gives rise to such shifts, we investigate the effects of
new scalar multiplets charged under the Standard Model gauge symmetries. We
determine the scalar parameter space that is allowed by current LHC Higgs
searches, and compare with complementary LHC searches that are sensitive to the
direct production of colored scalar states.Comment: 27 pages, 11 figures; v2: references added, correction to scalar form
factor, numerical results updated with Moriond 2012 data, conclusions
unchange
The Cosmology of Composite Inelastic Dark Matter
Composite dark matter is a natural setting for implementing inelastic dark
matter - the O(100 keV) mass splitting arises from spin-spin interactions of
constituent fermions. In models where the constituents are charged under an
axial U(1) gauge symmetry that also couples to the Standard Model quarks, dark
matter scatters inelastically off Standard Model nuclei and can explain the
DAMA/LIBRA annual modulation signal. This article describes the early Universe
cosmology of a minimal implementation of a composite inelastic dark matter
model where the dark matter is a meson composed of a light and a heavy quark.
The synthesis of the constituent quarks into dark mesons and baryons results in
several qualitatively different configurations of the resulting dark matter
hadrons depending on the relative mass scales in the system.Comment: 31 pages, 4 figures; references added, typos correcte
Bounds and Decays of New Heavy Vector-like Top Partners
We study the phenomenology of new heavy vector-like fermions that couple to
the third generation quarks via Yukawa interactions, covering all the allowed
representations under the standard model gauge groups. We first review tree and
loop level bounds on these states. We then discuss tree level decays and
loop-induced decays to photon or gluon plus top. The main decays at tree level
are to W b and/or Z and Higgs plus top via the new Yukawa couplings. The
radiative loop decays turn out to be quite close to the naive estimate: in all
cases, in the allowed perturbative parameter space, the branching ratios are
mildly sensitive on the new Yukawa couplings and small. We therefore conclude
that the new states can be observed at the LHC and that the tree level decays
can allow to distinguish the different representations. Moreover, the
observation of the radiative decays at the LHC would suggest a large Yukawa
coupling in the non-perturbative regime.Comment: 32 pages, 2 tables, 10 figure
- …
