984 research outputs found

    Jupiter - friend or foe? II: the Centaurs

    Get PDF
    It has long been assumed that the planet Jupiter acts as a giant shield, significantly lowering the impact rate of minor bodies upon the Earth, and thus enabling the development and evolution of life in a collisional environment which is not overly hostile. However, in the past, little work has been carried out to examine the validity of this idea. In the second of a series of papers, we examine the degree to which the impact risk resulting from objects on Centaur-like orbits is affected by the presence of a giant planet, in a continuing attempt to fully understand the impact regime under which life on Earth has developed. The Centaurs, which occupy orbits beyond Jupiter, have their origins in the Edgeworth-Kuiper belt that extends beyond Neptune. The giant planets peturb the Centaurs, sending a significanr fraction into the inner Solar System where they become visible as short-period comets. In this work we present results which show that the presence of a giant planet can act to significantly change the impact rate of short-period comets on the Earth, and that a giant planet often actually increases the impact flux greatly over that which would be expected were it not present. (Shortened version of abstract.)Comment: 13 pages, 1 Figur

    Jupiter – friend or foe? I: the asteroids

    Get PDF
    The asteroids are a major source of potential impactors on the Earth today. It has long been assumed that the giant planet Jupiter acts as a shield, significantly lowering the impact rate on the Earth from both cometary and asteroidal bodies. Such shielding, it is claimed, enabled the development and evolution of life in a collisional environment, which is not overly hostile. The reduced frequency of impacts, and of related mass extinctions, would have allowed life the time to thrive, where it would otherwise have been suppressed. However, in the past, little work has been carried out to examine the validity of this idea. In the first of several papers, we examine the degree to which the impact risk resulting from a population representative of the asteroids is enhanced or reduced by the presence of a giant planet, in an attempt to understand fully the impact regime under which life on Earth developed. Our results show that the situation is far less clear cut that has previously been assumed, that is, the presence of a giant planet can act to enhance the impact rate of asteroids on the Earth significantly

    Determining Habitability: Which exoEarths should we search for life?

    Get PDF
    Within the next few years, the first Earth-mass planets will be discovered around other stars. Some of those worlds will certainly lie within the classical "habitable zone" of their parent stars, and we will quickly move from knowing of no exoEarths to knowing many. For the first time, we will be in a position to carry out a detailed search for the first evidence of life beyond our Solar System. However, such observations will be hugely taxing and time consuming to perform, and it is almost certain that far more potentially habitable worlds will be known than it is possible to study. It is therefore important to catalogue and consider the various effects which make a promising planet more or less suitable for the development of life. In this work, we review the various planetary, dynamical and stellar influences that could influence the habitability of exoEarths. The various influences must be taken in concert when we attempt to decide where to focus our first detailed search for life. While there is no guarantee that any given planet will be inhabited, it is vitally important to ensure that we focus our time and effort on those planets most likely to yield a positive result.Comment: 32 pages, 2 figures, 1 table; Accepted to appear in the International Journal of Astrobiolog

    Jupiter - friend or foe? III: the Oort cloud comets

    Get PDF
    It has long been assumed that the planet Jupiter acts as a giant shield, significantly lowering the impact rate of small bodies on the Earth. However, until recently, very little work had been carried out examining the role played by Jupiter in determining the frequency of such collisions. In this work, the third of a series of papers, we examine the degree to which the impact rate on Earth resulting from the Oort cloud comets is enhanced or lessened by the presence of a giant planet in a Jupiter-like orbit, in an attempt to more fully understand the impact regime under which life on Earth has developed. Our results show that the presence of a giant planet in a Jupiter-like orbit significantly alters the impact rate of Oort cloud comets on the Earth, decreasing the rate as the mass of the giant increases. The greatest bombardment flus is observed when no giant planet is present.Comment: 21 pages, 4 Figures. Accepted for publication in the International Journal of Astrobiolog

    Kernel density classification and boosting: an L2 sub analysis

    Get PDF
    Kernel density estimation is a commonly used approach to classification. However, most of the theoretical results for kernel methods apply to estimation per se and not necessarily to classification. In this paper we show that when estimating the difference between two densities, the optimal smoothing parameters are increasing functions of the sample size of the complementary group, and we provide a small simluation study which examines the relative performance of kernel density methods when the final goal is classification. A relative newcomer to the classification portfolio is “boosting”, and this paper proposes an algorithm for boosting kernel density classifiers. We note that boosting is closely linked to a previously proposed method of bias reduction in kernel density estimation and indicate how it will enjoy similar properties for classification. We show that boosting kernel classifiers reduces the bias whilst only slightly increasing the variance, with an overall reduction in error. Numerical examples and simulations are used to illustrate the findings, and we also suggest further areas of research

    Habitable Zones of Host Stars During the Post-MS Phase

    Full text link
    A star will become brighter and brighter with stellar evolution, and the distance of its habitable zone will become farther and farther. Some planets outside the habitable zone of a host star during the main sequence phase may enter the habitable zone of the host star during other evolutionary phases. A terrestrial planet within the habitable zone of its host star is generally thought to be suited to life existence. Furthermore, a rocky moon around a giant planet may be also suited to life survive, provided that the planet-moon system is within the habitable zone of its host star. Using Eggleton's code and the boundary flux of habitable zone, we calculate the habitable zone of our Solar after the main sequence phase. It is found that Mars' orbit and Jupiter's orbit will enter the habitable zone of Solar during the subgiant branch phase and the red giant branch phase, respectively. And the orbit of Saturn will enter the habitable zone of Solar during the He-burning phase for about 137 million years. Life is unlikely at any time on Saturn, as it is a giant gaseous planet. However, Titan, the rocky moon of Saturn, may be suitable for biological evolution and become another Earth during that time. For low-mass stars, there are similar habitable zones during the He-burning phase as our Solar, because there are similar core masses and luminosities for these stars during that phase.Comment: 6 pages, 7 figures. Accepted by Ap & S
    • …
    corecore