81 research outputs found

    A solenoidal electron spectrometer for a precision measurement of the neutron β\beta-asymmetry with ultracold neutrons

    Full text link
    We describe an electron spectrometer designed for a precision measurement of the neutron β\beta-asymmetry with spin-polarized ultracold neutrons. The spectrometer consists of a 1.0-Tesla solenoidal field with two identical multiwire proportional chamber and plastic scintillator electron detector packages situated within 0.6-Tesla field-expansion regions. Select results from performance studies of the spectrometer with calibration sources are reported.Comment: 30 pages, 19 figures, 1 table, submitted to NIM

    The Strange Quark Contribution to the Proton's Magnetic Moment

    Get PDF
    We report a new determination of the strange quark contribution to the proton's magnetic form factor at a four-momentum transfer Q2 = 0.1 (GeV/c)^2 from parity-violating e-p elastic scattering. The result uses a revised analysis of data from the SAMPLE experiment which was carried out at the MIT-Bates Laboratory. The data are combined with a calculation of the proton's axial form factor GAe to determine the strange form factor GMs(Q2=0.1)=0.37 +- 0.20 +- 0.26 +- 0.07. The extrapolation of GMs to its Q2=0 limit and comparison with calculations is also discussed.Comment: 6 pages, 1 figure, submitted to Phys. Lett.

    Probing gluon helicity distribution and quark transversity through hyperon polarization in singly polarized pp collisions

    Full text link
    We study the polarization of hyperon in different processes in singly polarized pppp collisions, in particular its relation to the polarized parton distributions. We show that by measuring hyperon polarization in particularly chosen processes, one can extract useful information on these parton distributions. We show in particular that, by measuring the Σ+\Sigma^+ polarization in high pTp_T direct photon production process, one can extract information on the gluon helicity distribution; and by measuring the transverse polarization of hyeprons with high pTp_T in singly polarized reactions, one can obtain useful information on the transversity distribution. We present the numerical results obtained for those hyperon polarizations using different models for parton distribution function and those for the spin transfer in fragmentation processes.Comment: 25 pages, 8 figures, to appear in Phys. Rev.

    Burkhardt-Cottingham sum rule and forward spin polarizabilities in Heavy Baryon Chiral Perturbation Theory

    Full text link
    We study spin-dependent sum rules for forward virtual Compton scattering(VVCS) off the nucleon in heavy baryon chiral perturbation theory at order O(p4)O(p^4). We show how these sum rules can be evaluated from low energy expansions (in the virtual photon energy) of the forward VVCS amplitudes. We study in particular the Burkhardt -Cottingham sum rule in HBChPT and higher terms in the low energy expansion, which can be related to the generalized forward spin polarizabilities of the nucleon. The dependence of these observables on the photon virtuality Q2Q^2 can be accessed, at small and intermediate Q2Q^2 values, from existing and forthcoming data at Jefferson Lab.Comment: 16 pages,4 fig

    Parity Violation in Elastic Electron-Proton Scattering and the Proton's Strange Magnetic Form Factor

    Get PDF
    We report a new measurement of the parity-violating asymmetry in elastic electron scattering from the proton at backward scattering angles. This asymmetry is sensitive to the strange magnetic form factor of the proton as well as electroweak axial radiative corrections. The new measurement of A = -4.92±0.61±0.73 ppm provides a significant constraint on these quantities. The implications for the strange magnetic form factor are discussed in the context of theoretical estimates for the axial corrections

    Robust signatures of solar neutrino oscillation solutions

    Get PDF
    With the goal of identifying signatures that select specific neutrino oscillation parameters, we test the robustness of global oscillation solutions that fit all the available solar and reactor experimental data. We use three global analysis strategies previously applied by different authors and also determine the sensitivity of the oscillation solutions to the critical nuclear fusion cross section, S_{17}(0), for the production of 8B. The favored solutions are LMA, LOW, and VAC in order of g.o.f. The neutral current to charged current ratio for SNO is predicted to be 3.5 +- 0.6 (1 sigma), which is separated from the no-oscillation value of 1.0 by much more than the expected experimental error. The predicted range of the day-night difference in charged current rates is (8.2 +- 5.2)% and is strongly correlated with the day-night effect for neutrino-electron scattering. A measurement by SNO of either a NC to CC ratio > 3.3 or a day-night difference > 10%, would favor a small region of the currently allowed LMA neutrino parameter space. The global oscillation solutions predict a 7Be neutrino-electron scattering rate in BOREXINO and KamLAND in the range 0.66 +- 0.04 of the BP00 standard solar model rate, a prediction which can be used to test both the solar model and the neutrino oscillation theory. Only the LOW solution predicts a large day-night effect(< 42%) in BOREXINO and KamLAND. For the KamLAND reactor experiment, the LMA solution predicts 0.44 of the standard model rate; we evaluate 1 sigma and 3 sigma uncertainties and the first and second moments of the energy spectrum.Comment: Included predictions for KamLAND reactor experiment and updated to include 1496 days of Super-Kamiokande observation

    A Lattice Study of the Magnetic Moment and the Spin Structure of the Nucleon

    Get PDF
    Using an approach free from momentum extrapolation, we calculate the nucleon magnetic moment and the fraction of the nucleon spin carried by the quark angular momentum in the quenched lattice QCD approximation. Quarks with three values of lattice masses, 210, 124 and 80 MeV, are formulated on the lattice using the standard Wilson approach. At every mass, 100 gluon configurations on 16^3 x 32 lattice with \beta=6.0 are used for statistical averaging. The results are compared with the previous calculations with momentum extrapolation. The contribution of the disconnected diagrams is studied at the largest quark mass using noise theory technique.Comment: 14 pages, 3 figures, Talk given at Lattice2001, Berlin, German

    Spin structure of the nucleon at low energies

    Full text link
    The spin structure of the nucleon is analyzed in the framework of a Lorentz-invariant formulation of baryon chiral perturbation theory. The structure functions of doubly virtual Compton scattering are calculated to one-loop accuracy (fourth order in the chiral expansion). We discuss the generalization of the Gerasimov-Drell-Hearn sum rule, the Burkhardt-Cottingham sum rule and moments of these. We give predictions for the forward and the longitudinal-transverse spin polarizabilities of the proton and the neutron at zero and finite photon virtuality. A detailed comparison to results obtained in heavy baryon chiral perturbation theory is also given.Comment: 29 pp, 14 fig

    Higher moments of nucleon spin structure functions in heavy baryon chiral perturbation theory and in a resonance model

    Full text link
    The third moment d2d_2 of the twist-3 part of the nucleon spin structure function g2g_2 is generalized to arbitrary momentum transfer Q2Q^2 and is evaluated in heavy baryon chiral perturbation theory (HBChPT) up to order O(p4){\mathcal{O}}(p^4) and in a unitary isobar model (MAID). We show how to link d2d_2 as well as higher moments of the nucleon spin structure functions g1g_1 and g2g_2 to nucleon spin polarizabilities. We compare our results with the most recent experimental data, and find a good description of these available data within the unitary isobar model. We proceed to extract the twist-4 matrix element f2f_2 which appears in the 1/Q21/Q^2 suppressed term in the twist expansion of the spin structure function g1g_1 for proton and neutron.Comment: 30 pages, 7 figure

    Determination of the neutron electric form factor in quasielastic scattering of polarized electrons from polarized 3He

    Get PDF
    We report a measurement of the asymmetry in spin-dependent quasielastic scattering of longitudinally polarized electrons from a polarized 3He gas target. The asymmetry is measured at kinematics sensitive to the transverse-longitudinal response function RTL(Q2,ω). The value of the neutron electric form factor GEn(Q2=0.16 (GeV/c2))=+0.070±0.100±0.035 is extracted from the asymmetry using a Faddeev calculation of the 3He wave function
    corecore