19 research outputs found
Recommended from our members
Photochemically produced SO2 in the atmosphere of WASP-39b
S.-M.T. is supported by the European Research Council advanced grant EXOCONDENSE (no. 740963; principal investigator: R. T. Pierrehumbert). E.K.H.L. is supported by the SNSF Ambizione Fellowship grant (no. 193448). X.Z. is supported by NASA Exoplanet Research grant 80NSSC22K0236. O.V. acknowledges funding from the ANR project âEXACTâ (ANR-21-CE49-0008-01), from the Centre National dâĂtudes Spatiales (CNES) and from the CNRS/INSU Programme National de PlanĂ©tologie (PNP). L.D. acknowledges support from the European Union H2020-MSCA-ITN-2109 under grant no. 860470 (CHAMELEON) and the KU Leuven IDN/19/028 grant Escher. This work benefited from the 2022 Exoplanet Summer Program at the Other Worlds Laboratory (OWL) at the University of California, Santa Cruz, a programme financed by the Heising-Simons Foundation. T.D. is an LSSTC Catalyst Fellow. J.K. is an Imperial College Research Fellow. B.V.R. is a 51 Pegasi b Fellow. L.W. is an NHFP Sagan Fellow. A.D.F. is an NSF Graduate Research Fellow.Photochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability1. However, no unambiguous photochemical products have been detected in exoplanet atmospheres so far. Recent observations from the JWST Transiting Exoplanet Community Early Release Science Program2,3 found a spectral absorption feature at 4.05 ÎŒm arising from sulfur dioxide (SO2) in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of around 1,100 K (ref. 4). The most plausible way of generating SO2 in such an atmosphere is through photochemical processes5,6. Here we show that the SO2 distribution computed by a suite of photochemical models robustly explains the 4.05-ÎŒm spectral feature identified by JWST transmission observations7 with NIRSpec PRISM (2.7Ï)8 and G395H (4.5Ï)9. SO2 is produced by successive oxidation of sulfur radicals freed when hydrogen sulfide (H2S) is destroyed. The sensitivity of the SO2 feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of about 10Ă solar. We further point out that SO2 also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations.Publisher PDFPeer reviewe
A hot mini-Neptune in the radius valley orbiting solar analogue HD 110113
We report the discovery of HD 110113 b (TESS object of interest-755.01), a transiting mini-Neptune exoplanet on a 2.5-d orbit around the solar-analogue HD 110113 (Teff = 5730 K). Using TESS photometry and High Accuracy Radial velocity Planet Searcher (HARPS) radial velocities gathered by the NCORES program, we find that HD 110113 b has a radius of 2.05 ± 0.12 Râ and a mass of 4.55 ± 0.62 Mâ. The resulting density of g cm-3 is significantly lower than would be expected from a pure-rock world; therefore HD 110113 b must be a mini-Neptune with a significant volatile atmosphere. The high incident flux places it within the so-called radius valley; however, HD 110113 b was able to hold on to a substantial (0.1-1 per cent) H-He atmosphere over its âŒ4 Gyr lifetime. Through a novel simultaneous Gaussian process fit to multiple activity indicators, we were also able to fit for the strong stellar rotation signal with period 20.8 ± 1.2 d from the RVs and confirm an additional non-transiting planet, HD 110113 c, which has a mass of 10.5 ± 1.2 Mâ and a period of d
TESS discovery of a super-earth and three sub-neptunes hosted by the bright, sunlike star HD 108236
We report the discovery and validation of four extrasolar planets hosted by the nearby, bright, Sun-like (G3V) star HD 108236 using data from the Transiting Exoplanet Survey Satellite (TESS). We present transit photometry, reconnaissance, and precise Doppler spectroscopy, as well as high-resolution imaging, to validate the planetary nature of the objects transiting HD 108236, also known as the TESS Object of Interest (TOI) 1233. The innermost planet is a possibly rocky super-Earth with a period of 3.79523+0.00047-0.00044 days and has a radius of 1.586 ± 0.098 Râ.The outer planets are sub-Neptunes, with potential gaseous envelopes, having radii of 2.068+0.10-0.091 Râ, 2.72 ± 0.11 Râ, and 3.12+0.13-0.12 Râ and periods of 6.20370+0.00064-0.00052 days, 14.17555+0.00099-0.0011 days, and 19.5917+0.0022-0.0020 days, respectively. With V and Ks magnitudes of 9.2 and 7.6, respectively, the bright host star makes the transiting planets favorable targets for mass measurements and, potentially, for atmospheric characterization via transmission spectroscopy. HD 108236 is the brightest Sun-like star in the visual (V ) band known to host four or more transiting exoplanets. The discovered planets span a broad range of planetary radii and equilibrium temperatures and share a common history of insolation from a Sun-like star (Râ = 0.888 ± 0.017 Râ, Teff = 5730 ± 50 K), making HD 108236 an exciting, opportune cosmic laboratory for testing models of planet formation and evolution
A pair of tess planets spanning the radius valley around the nearby mid-m dwarf ltt 3780
We present the confirmation of two new planets transiting the nearby mid-M dwarf LTT 3780 (TIC 36724087, TOI-732, V = 13.07, K s = 8.204, R s = 0.374 R oË, M s = 0.401 M oË, d = 22 pc). The two planet candidates are identified in a single Transiting Exoplanet Survey Satellite sector and validated with reconnaissance spectroscopy, ground-based photometric follow-up, and high-resolution imaging. With measured orbital periods of P b = 0.77, P c = 12.25 days and sizes r p,b = 1.33 ± 0.07, r p,c = 2.30 ± 0.16 R â, the two planets span the radius valley in period-radius space around low-mass stars, thus making the system a laboratory to test competing theories of the emergence of the radius valley in that stellar mass regime. By combining 63 precise radial velocity measurements from the High Accuracy Radial velocity Planet Searcher (HARPS) and HARPS-N, we measure planet masses of mpb 2.62+ 0.48 and-0.46= mpc 8.6+1.6-1.3 Mâ, which indicates that LTT 3780b has a bulk composition consistent with being Earth-like, while LTT 3780c likely hosts an extended H/He envelope. We show that the recovered planetary masses are consistent with predictions from both photoevaporation and core-powered mass-loss models. The brightness and small size of LTT 3780, along with the measured planetary parameters, render LTT 3780b and c as accessible targets for atmospheric characterization of planets within the same planetary system and spanning the radius valley
Recommended from our members
Nautilus Space Observatory: a very large aperture space telescope constellation enabled by scalable optical manufacturing technologies
We describe progress on the Nautilus Space Observatory concept that is enabled by novel, very large (8.5m-diameter), ultralight-weight, multi-order diffractive lenses that can be cost-effectively replicated. The scientific goal of Nautilus is the rigorous statistical exploration of one thousand potentially life-bearing planets and the assessment of the diversity of exo-earths. Here we review the science requirements and key design features of Nautilus. The new optical technology (MODE lenses) at the heart of the Nautilus telescopes also poses exciting new optical fabrication and metrology challenges. We will summarize these challenges and provide an overview of emerging solutions. © 2022 SPIE.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
ACCESS: A Visual to Near-infrared Spectrum of the Hot Jupiter WASP-43b with Evidence of H2O, but No Evidence of Na or K
We present a new ground-based visual transmission spectrum of the hot Jupiter WASP-43b, obtained as part of the ACCESS Survey. The spectrum was derived from four transits observed between 2015 and 2018, with combined wavelength coverage between 5300 and 9000 and an average photometric precision of 708 ppm in 230 bins. We perform an atmospheric retrieval of our transmission spectrum combined with literature Hubble Space Telescope/WFC3 observations to search for the presence of clouds/hazes as well as Na, K, Hα, and H2O planetary absorption and stellar spot contamination over a combined spectral range of 5318-16420. We do not detect a statistically significant presence of Na i or K i alkali lines, or Hα in the atmosphere of WASP-43b. We find that the observed transmission spectrum can be best explained by a combination of heterogeneities on the photosphere of the host star and a clear planetary atmosphere with H2O. This model yields a log evidence of 8.26 ± 0.42 higher than a flat (featureless) spectrum. In particular, the observations marginally favor the presence of large, low-contrast spots over the four ACCESS transit epochs with an average covering fraction fhet=0.27-0.16+0.42 and temperature contrast ÎT = 132 K ± 132 K. Within the planet's atmosphere, we recover a log H2O volume mixing ratio of -2.78-1.47+1.38, which is consistent with previous H2O abundance determinations for this planet. © 2019. The American Astronomical Society. All rights reserved.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
The Featureless HST/WFC3 Transmission Spectrum of the Rocky Exoplanet GJ 1132b: No Evidence for a Cloud-free Primordial Atmosphere and Constraints on Starspot Contamination
Orbiting an M dwarf 12 pc away, the transiting exoplanet GJ 1132b is a prime target for transmission spectroscopy. With a mass of 1.7 Mâ and radius of 1.1 Râ, GJ 1132b's bulk density indicates that this planet is rocky. Yet with an equilibrium temperature of 580 K, GJ 1132b may still retain some semblance of an atmosphere. Understanding whether this atmosphere exists and its composition will be vital for understanding how the atmospheres of terrestrial planets orbiting M dwarfs evolve. We observe five transits of GJ 1132b with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). We find a featureless transmission spectrum from 1.1 to 1.7 ÎŒm, ruling out cloud-free atmospheres with metallicities 4.8Ï confidence. We combine our WFC3 results with transit depths from TESS and archival broadband and spectroscopic observations to find a featureless spectrum across 0.7 to 4.5 ÎŒm. GJ 1132b therefore has a high mean molecular weight atmosphere, possesses a high-altitude aerosol layer, or has effectively no atmosphere. Higher-precision observations are required in order to differentiate between these possibilities. We explore the impact of hot and cold starspots on the observed transmission spectrum GJ 1132b, quantifying the amplitude of spot-induced transit depth features. Using a simple Poisson model, we estimate spot temperature contrasts, spot covering fractions, and spot sizes for GJ 1132. These limits, as well as the modeling framework, may be useful for future observations of GJ 1132b or other planets transiting similarly inactive M dwarfs
Recommended from our members
ACCESS: Tentative Detection of H2O in the Ground-based Optical Transmission Spectrum of the Low-density Hot Saturn HATS-5b
We present a precise ground-based optical transmission spectrum of the hot Saturn HATS-5b (T eq = 1025 K), obtained as part of the ACCESS survey with the IMACS multi-object spectrograph mounted on the Magellan Baade Telescope. Our spectra cover the 0.5-0.9 ÎŒm region and are the product of five individual transits observed between 2014 and 2018. We introduce the usage of additional second-order light in our analyses, which allows us to extract an âextraâ transit light curve, improving the overall precision of our combined transit spectrum. We find that the favored atmospheric model for this transmission spectrum is a solar-metallicity atmosphere with subsolar C/O, whose features are dominated by H2O and with a depleted abundance of Na and K. If confirmed, this would point to a âclearâ atmosphere at the pressure levels probed by transmission spectroscopy for HATS-5b. Our best-fit atmospheric model predicts a rich near-IR spectrum, which makes this exoplanet an excellent target for future follow-up observations with the James Webb Space Telescope, both to confirm this H2O detection and to superbly constrain the atmosphereâs parameters. © 2022. The Author(s). Published by the American Astronomical Society.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
EDEN: Flare Activity of the Nearby Exoplanet-hosting M Dwarf Wolf 359 Based on K2 and EDEN Light Curves
We report the flare activity of Wolf 359, the fifth closest star to the Sun and a candidate exoplanet-hosting M dwarf. The star was a target of the Kepler/K2 mission and was observed by the EDEN project, a global network of 1-2 m class telescopes for detection and characterization of rocky exoplanets in the habitable zones of late-M dwarfs within 50 light year from the solar system. In the combination of the archived K2 data and our EDEN observations, a total of 872 flares have been detected, 861 with the K2 (860 in the short-cadence and 18 in the long-cadence data, with 17 long-cadence events having short-cadence counterparts) and 11 with EDEN. Wolf 359 has relatively strong flare activity even among flaring M dwarfs, in terms of the flare activity indicator (FA) defined as the integrated flare energy relative to the total stellar bolometric energy, where FA = âE f /â«L bol dt ⌠8.93 Ă 10-5 for the long-cadence flares, whereas for K2 short cadence and EDEN flares, the FA values are somewhat larger, FA â 6.67 Ă 10-4 and FA â 5.25 Ă 10-4, respectively. Such a level of activity, in accordance with the rotation period (P rot), suggests the star to be in the saturation phase. The size of the starspots is estimated to be at least 1.87% ± 0.59% of the projected disk area of Wolf 359. We find no correlation of FA with the stellar rotational phase. Our analysis indicates a flare frequency distribution in a power-law form of with α = 2.13 ± 0.14, equivalent to an occurrence rate of flares E f â„ 1031 erg about once per day and of superflares with E f â„ 1033 erg approximately 10 times per year. These superflares may impact the habitability of system in multiple ways, the details of which are topics for future investigations. © 2021. The American Astronomical Society. All rights reserved.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]