8 research outputs found

    Spitzer Parallax Of Ogle-2015-blg-0966: A Cold Neptune In The Galactic Disk

    Get PDF
    We report the detection of a cold Neptune mplanet = 21 ± 2 M? orbiting a 0.38 M? M dwarf lying 2.5–3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of planets. This is the first time that the complex real-time protocols described by Yee et al., which aim to maximize planet sensitivity while maintaining sample integrity, have been carried out in practice. Multiple survey and follow up teams successfully combined their efforts within the framework of these protocols to detect this planet. This is the second planet in the Spitzer Galactic distribution sample. Both are in the near to mid-disk and are clearly not in the Galactic bulge

    The Spitzer Microlensing Program As A Probe For Globular Cluster Planets: Analysis Of Ogle-2015-BLG-0448

    Get PDF
    The microlensing event OGLE-2015-BLG-0448 was observed by Spitzer and lay within the tidal radius of the globular cluster NGC 6558. The event had moderate magnification and was intensively observed, hence it had the potential to probe the distribution of planets in globular clusters. We measure the proper motion of NGC 6558 (μcl(N,E)=(+0.36±0.10,+1.42±0.10)  mas  yr1{{\boldsymbol{\mu }}}_{\mathrm{cl}}(N,E)=(+0.36\pm 0.10,+1.42\pm 0.10)\;{\rm{mas}}\;{{\rm{yr}}}^{-1}) as well as the source and show that the lens is not a cluster member. Even though this particular event does not probe the distribution of planets in globular clusters, other potential cluster lens events can be verified using our methodology. Additionally, we find that microlens parallax measured using Optical Gravitational Lens Experiment (OGLE) photometry is consistent with the value found based on the light curve displacement between the Earth and Spitzer

    A super-Jupiter orbiting a late-type star:a refined analysis of microlensing event OGLE-2012-BLG-0406

    No full text
    We present a detailed analysis of survey and follow-up observations of microlensing event OGLE-2012-BLG-0406 based on data obtained from 10 different observatories. Intensive coverage of the light curve, especially the perturbation part, allowed us to accurately measure the parallax effect and lens orbital motion. Combining our measurement of the lens parallax with the angular Einstein radius determined from finite-source effects, we estimate the physical parameters of the lens system. We find that the event was caused by a 2.73 ± 0.43 M J planet orbiting a 0.44 ± 0.07 M ☉ early M-type star. The distance to the lens is 4.97 ± 0.29 kpc and the projected separation between the host star and its planet at the time of the event is 3.45 ± 0.26 AU. We find that the additional coverage provided by follow-up observations, especially during the planetary perturbation, leads to a more accurate determination of the physical parameters of the lens.</p

    The Colletotrichum gloeosporioides species complex

    No full text

    Ice-Ocean Exchange Processes in the Jovian and Saturnian Satellites

    No full text

    "Swords into ploughshares": Breaking new ground with radar hardware and technique in physical research after World War II

    No full text

    Dust Emission by Active Moons

    No full text
    corecore