113 research outputs found

    The Information Geometry of the Ising Model on Planar Random Graphs

    Full text link
    It has been suggested that an information geometric view of statistical mechanics in which a metric is introduced onto the space of parameters provides an interesting alternative characterisation of the phase structure, particularly in the case where there are two such parameters -- such as the Ising model with inverse temperature β\beta and external field hh. In various two parameter calculable models the scalar curvature R{\cal R} of the information metric has been found to diverge at the phase transition point βc\beta_c and a plausible scaling relation postulated: Rββcα2{\cal R} \sim |\beta- \beta_c|^{\alpha - 2}. For spin models the necessity of calculating in non-zero field has limited analytic consideration to 1D, mean-field and Bethe lattice Ising models. In this letter we use the solution in field of the Ising model on an ensemble of planar random graphs (where α=1,β=1/2,γ=2\alpha=-1, \beta=1/2, \gamma=2) to evaluate the scaling behaviour of the scalar curvature, and find Rββc2{\cal R} \sim | \beta- \beta_c |^{-2}. The apparent discrepancy is traced back to the effect of a negative α\alpha.Comment: Version accepted for publication in PRE, revtex

    Noncommutative vector bundles over fuzzy CP^N and their covariant derivatives

    Get PDF
    We generalise the construction of fuzzy CP^N in a manner that allows us to access all noncommutative equivariant complex vector bundles over this space. We give a simplified construction of polarization tensors on S^2 that generalizes to complex projective space, identify Laplacians and natural noncommutative covariant derivative operators that map between the modules that describe noncommuative sections. In the process we find a natural generalization of the Schwinger-Jordan construction to su(n) and identify composite oscillators that obey a Heisenberg algebra on an appropriate Fock space.Comment: 34 pages, v2 contains minor corrections to the published versio

    The Standard Model Fermion Spectrum From Complex Projective spaces

    Get PDF
    It is shown that the quarks and leptons of the standard model, including a right-handed neutrino, can be obtained by gauging the holonomy groups of complex projective spaces of complex dimensions two and three. The spectrum emerges as chiral zero modes of the Dirac operator coupled to gauge fields and the demonstration involves an index theorem analysis on a general complex projective space in the presence of topologically non-trivial SU(n)xU(1) gauge fields. The construction may have applications in type IIA string theory and non-commutative geometry.Comment: 13 pages. Typset using LaTeX and JHEP3 style files. Minor typos correcte

    Fuzzy Scalar Field Theory as a Multitrace Matrix Model

    Get PDF
    We develop an analytical approach to scalar field theory on the fuzzy sphere based on considering a perturbative expansion of the kinetic term. This expansion allows us to integrate out the angular degrees of freedom in the hermitian matrices encoding the scalar field. The remaining model depends only on the eigenvalues of the matrices and corresponds to a multitrace hermitian matrix model. Such a model can be solved by standard techniques as e.g. the saddle-point approximation. We evaluate the perturbative expansion up to second order and present the one-cut solution of the saddle-point approximation in the large N limit. We apply our approach to a model which has been proposed as an appropriate regularization of scalar field theory on the plane within the framework of fuzzy geometry.Comment: 1+25 pages, replaced with published version, minor improvement

    Renormalization of composite operators

    Get PDF
    The blocked composite operators are defined in the one-component Euclidean scalar field theory, and shown to generate a linear transformation of the operators, the operator mixing. This transformation allows us to introduce the parallel transport of the operators along the RG trajectory. The connection on this one-dimensional manifold governs the scale evolution of the operator mixing. It is shown that the solution of the eigenvalue problem of the connection gives the various scaling regimes and the relevant operators there. The relation to perturbative renormalization is also discussed in the framework of the ϕ3\phi^3 theory in dimension d=6d=6.Comment: 24 pages, revtex (accepted by Phys. Rev. D), changes in introduction and summar

    Spin jj Dirac Operators on the Fuzzy 2-Sphere

    Full text link
    The spin 1/2 Dirac operator and its chirality operator on the fuzzy 2-sphere SF2S^2_F can be constructed using the Ginsparg-Wilson(GW) algebra [arxiv:hep-th/0511114]. This construction actually exists for any spin jj on SF2S^2_F, and have continuum analogues as well on the commutative sphere S2S^2 or on R2\mathbb{R}^{2}. This is a remarkable fact and has no known analogue in higher dimensional Minkowski spaces. We study such operators on SF2S^2_F and the commutative S2S^2 and formulate criteria for the existence of the limit from the former to the latter. This singles out certain fuzzy versions of these operators as the preferred Dirac operators. We then study the spin 1 Dirac operator of this preferred type and its chirality on the fuzzy 2-sphere and formulate its instanton sectors and their index theory. The method to generalize this analysis to any spin jj is also studied in detail.Comment: 16 pages, 1 tabl

    Scalar Field Theory on Fuzzy S^4

    Get PDF
    Scalar fields are studied on fuzzy S4S^4 and a solution is found for the elimination of the unwanted degrees of freedom that occur in the model. The resulting theory can be interpreted as a Kaluza-Klein reduction of CP^3 to S^4 in the fuzzy context.Comment: 16 pages, LaTe

    Scalar Solitons on the Fuzzy Sphere

    Full text link
    We study scalar solitons on the fuzzy sphere at arbitrary radius and noncommutativity. We prove that no solitons exist if the radius is below a certain value. Solitons do exist for radii above a critical value which depends on the noncommutativity parameter. We construct a family of soliton solutions which are stable and which converge to solitons on the Moyal plane in an appropriate limit. These solutions are rotationally symmetric about an axis and have no allowed deformations. Solitons that describe multiple lumps on the fuzzy sphere can also be constructed but they are not stable.Comment: 24 pages, 2 figures, typo corrected and stylistic changes. v3: reference adde

    Numerical simulations of a non-commutative theory: the scalar model on the fuzzy sphere

    Get PDF
    We address a detailed non-perturbative numerical study of the scalar theory on the fuzzy sphere. We use a novel algorithm which strongly reduces the correlation problems in the matrix update process, and allows the investigation of different regimes of the model in a precise and reliable way. We study the modes associated to different momenta and the role they play in the ``striped phase'', pointing out a consistent interpretation which is corroborated by our data, and which sheds further light on the results obtained in some previous works. Next, we test a quantitative, non-trivial theoretical prediction for this model, which has been formulated in the literature: The existence of an eigenvalue sector characterised by a precise probability density, and the emergence of the phase transition associated with the opening of a gap around the origin in the eigenvalue distribution. The theoretical predictions are confirmed by our numerical results. Finally, we propose a possible method to detect numerically the non-commutative anomaly predicted in a one-loop perturbative analysis of the model, which is expected to induce a distortion of the dispersion relation on the fuzzy sphere.Comment: 1+36 pages, 18 figures; v2: 1+55 pages, 38 figures: added the study of the eigenvalue distribution, added figures, tables and references, typos corrected; v3: 1+20 pages, 10 eps figures, new results, plots and references added, technical details about the tests at small matrix size skipped, version published in JHE

    Duality and Non-linear Response for Quantum Hall Systems

    Get PDF
    We derive the implications of particle-vortex duality for the electromagnetic response of Quantum Hall systems beyond the linear-response regime. This provides a first theoretical explanation of the remarkable duality which has been observed in the nonlinear regime for the electromagnetic response of Quantum Hall systems.Comment: 7 pages, 1 figure, typeset in LaTe
    corecore