198 research outputs found
EUV Spectra of the Full Solar Disk: Analysis and Results of the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS)
We analyze EUV spectra of the full solar disk from the Cosmic Hot
Interstellar Plasma Spectrometer (CHIPS) spanning a period of two years. The
observations were obtained via a fortuitous off-axis light path in the 140 --
270 Angstrom passband. The general appearance of the spectra remained
relatively stable over the two-year time period, but did show significant
variations of up to 25% between two sets of Fe lines that show peak emission at
1 MK and 2 MK. The variations occur at a measured period of 27.2 days and are
caused by regions of hotter and cooler plasma rotating into, and out of, the
field of view. The CHIANTI spectral code is employed to determine plasma
temperatures, densities, and emission measures. A set of five isothermal
plasmas fit the full disk spectra well. A 1 -- 2 MK plasma of Fe contributes
85% of the total emission in the CHIPS passband. The standard Differential
Emission Measures (DEMs) supplied with the CHIANTI package do not fit the CHIPS
spectra well as they over-predict emission at temperatures below log(T) = 6.0
and above log(T) = 6.3. The results are important for cross-calibrating TIMED,
SORCE, SOHO/EIT, and CDS/GIS, as well as the recently launched Solar Dynamics
Observatory.Comment: 27 Pages, 13 Figure
Non-monotonic variation with salt concentration of the second virial coefficient in protein solutions
The osmotic virial coefficient of globular protein solutions is
calculated as a function of added salt concentration at fixed pH by computer
simulations of the ``primitive model''. The salt and counter-ions as well as a
discrete charge pattern on the protein surface are explicitly incorporated. For
parameters roughly corresponding to lysozyme, we find that first
decreases with added salt concentration up to a threshold concentration, then
increases to a maximum, and then decreases again upon further raising the ionic
strength. Our studies demonstrate that the existence of a discrete charge
pattern on the protein surface profoundly influences the effective interactions
and that non-linear Poisson Boltzmann and Derjaguin-Landau-Verwey-Overbeek
(DLVO) theory fail for large ionic strength. The observed non-monotonicity of
is compared to experiments. Implications for protein crystallization are
discussed.Comment: 43 pages, including 17 figure
Updated Nucleosynthesis Constraints on Unstable Relic Particles
We revisit the upper limits on the abundance of unstable massive relic
particles provided by the success of Big-Bang Nucleosynthesis calculations. We
use the cosmic microwave background data to constrain the baryon-to-photon
ratio, and incorporate an extensively updated compilation of cross sections
into a new calculation of the network of reactions induced by electromagnetic
showers that create and destroy the light elements deuterium, he3, he4, li6 and
li7. We derive analytic approximations that complement and check the full
numerical calculations. Considerations of the abundances of he4 and li6 exclude
exceptional regions of parameter space that would otherwise have been permitted
by deuterium alone. We illustrate our results by applying them to massive
gravitinos. If they weigh ~100 GeV, their primordial abundance should have been
below about 10^{-13} of the total entropy. This would imply an upper limit on
the reheating temperature of a few times 10^7 GeV, which could be a potential
difficulty for some models of inflation. We discuss possible ways of evading
this problem.Comment: 40 pages LaTeX, 18 eps figure
New insights into the genetic etiology of Alzheimer's disease and related dementias
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
- …