1,418 research outputs found
Van Hove Singularity and D-Wave Pairing in Disordered Superconductors
We apply the coherent potential approximation (CPA) to a simple model for
disordered superconductors with d-wave pairing. We demonstrate that whilst the
effectiveness of an electronic Van Hove singularity to enhance the transition
temperature T is reduced by disorder it is not eliminated. In fact we give
a qualitative account of changes in the T vs. doping curve with increasing
disorder and compare our results with experiments on the
Y_{0.8}Ca_{0.2}Ba_2(Cu_{1-c}Zn_c)_{3}O_{7-\delta} alloys.Comment: 4 pages of text and 7 postscript file
Sagnac Interferometer as a Speed-Meter-Type, Quantum-Nondemolition Gravitational-Wave Detector
According to quantum measurement theory, "speed meters" -- devices that
measure the momentum, or speed, of free test masses -- are immune to the
standard quantum limit (SQL). It is shown that a Sagnac-interferometer
gravitational-wave detector is a speed meter and therefore in principle it can
beat the SQL by large amounts over a wide band of frequencies. It is shown,
further, that, when one ignores optical losses, a signal-recycled Sagnac
interferometer with Fabry-Perot arm cavities has precisely the same
performance, for the same circulating light power, as the Michelson speed-meter
interferometer recently invented and studied by P. Purdue and the author. The
influence of optical losses is not studied, but it is plausible that they be
fairly unimportant for the Sagnac, as for other speed meters. With squeezed
vacuum (squeeze factor ) injected into its dark port, the
recycled Sagnac can beat the SQL by a factor over the
frequency band 10 {\rm Hz} \alt f \alt 150 {\rm Hz} using the same
circulating power kW as is used by the (quantum limited)
second-generation Advanced LIGO interferometers -- if other noise sources are
made sufficiently small. It is concluded that the Sagnac optical configuration,
with signal recycling and squeezed-vacuum injection, is an attractive candidate
for third-generation interferometric gravitational-wave detectors (LIGO-III and
EURO).Comment: 12 pages, 6 figure
Weak magnetism and non-Fermi liquids near heavy-fermion critical points
This paper is concerned with the weak-moment magnetism in heavy-fermion
materials and its relation to the non-Fermi liquid physics observed near the
transition to the Fermi liquid. We explore the hypothesis that the primary
fluctuations responsible for the non-Fermi liquid physics are those associated
with the destruction of the large Fermi surface of the Fermi liquid. Magnetism
is suggested to be a low-energy instability of the resulting small Fermi
surface state. A concrete realization of this picture is provided by a
fractionalized Fermi liquid state which has a small Fermi surface of conduction
electrons, but also has other exotic excitations with interactions described by
a gauge theory in its deconfined phase. Of particular interest is a
three-dimensional fractionalized Fermi liquid with a spinon Fermi surface and a
U(1) gauge structure. A direct second-order transition from this state to the
conventional Fermi liquid is possible and involves a jump in the electron Fermi
surface volume. The critical point displays non-Fermi liquid behavior. A
magnetic phase may develop from a spin density wave instability of the spinon
Fermi surface. This exotic magnetic metal may have a weak ordered moment
although the local moments do not participate in the Fermi surface.
Experimental signatures of this phase and implications for heavy-fermion
systems are discussed.Comment: 20 pages, 8 figures; (v2) includes expanded discussion and solution
of quantum Boltzmann equatio
Thermodynamic properties of excess-oxygen-doped La2CuO4.11 near a simultaneous transition to superconductivity and long-range magnetic order
We have measured the specific heat and magnetization {\it versus} temperature
in a single crystal sample of superconducting LaCuO and in a
sample of the same material after removing the excess oxygen, in magnetic
fields up to 15 T. Using the deoxygenated sample to subtract the phonon
contribution, we find a broad peak in the specific heat, centered at 50 K. This
excess specific heat is attributed to fluctuations of the Cu spins possibly
enhanced by an interplay with the charge degrees of freedom, and appears to be
independent of magnetic field, up to 15 T. Near the superconducting transition
(=0)= 43 K, we find a sharp feature that is strongly suppressed when
the magnetic field is applied parallel to the crystallographic c-axis. A model
for 3D vortex fluctuations is used to scale magnetization measured at several
magnetic fields. When the magnetic field is applied perpendicular to the
c-axis, the only observed effect is a slight shift in the superconducting
transition temperature.Comment: 8 pages, 8 figure
Non-monotonic variation with salt concentration of the second virial coefficient in protein solutions
The osmotic virial coefficient of globular protein solutions is
calculated as a function of added salt concentration at fixed pH by computer
simulations of the ``primitive model''. The salt and counter-ions as well as a
discrete charge pattern on the protein surface are explicitly incorporated. For
parameters roughly corresponding to lysozyme, we find that first
decreases with added salt concentration up to a threshold concentration, then
increases to a maximum, and then decreases again upon further raising the ionic
strength. Our studies demonstrate that the existence of a discrete charge
pattern on the protein surface profoundly influences the effective interactions
and that non-linear Poisson Boltzmann and Derjaguin-Landau-Verwey-Overbeek
(DLVO) theory fail for large ionic strength. The observed non-monotonicity of
is compared to experiments. Implications for protein crystallization are
discussed.Comment: 43 pages, including 17 figure
Simulation of dimensionality effects in thermal transport
The discovery of nanostructures and the development of growth and fabrication
techniques of one- and two-dimensional materials provide the possibility to
probe experimentally heat transport in low-dimensional systems. Nevertheless
measuring the thermal conductivity of these systems is extremely challenging
and subject to large uncertainties, thus hindering the chance for a direct
comparison between experiments and statistical physics models. Atomistic
simulations of realistic nanostructures provide the ideal bridge between
abstract models and experiments. After briefly introducing the state of the art
of heat transport measurement in nanostructures, and numerical techniques to
simulate realistic systems at atomistic level, we review the contribution of
lattice dynamics and molecular dynamics simulation to understanding nanoscale
thermal transport in systems with reduced dimensionality. We focus on the
effect of dimensionality in determining the phononic properties of carbon and
semiconducting nanostructures, specifically considering the cases of carbon
nanotubes, graphene and of silicon nanowires and ultra-thin membranes,
underlying analogies and differences with abstract lattice models.Comment: 30 pages, 21 figures. Review paper, to appear in the Springer Lecture
Notes in Physics volume "Thermal transport in low dimensions: from
statistical physics to nanoscale heat transfer" (S. Lepri ed.
Orbital-selective Mott transitions: Heavy fermions and beyond
Quantum phase transitions in metals are often accompanied by violations of
Fermi liquid behavior in the quantum critical regime. Particularly fascinating
are transitions beyond the Landau-Ginzburg-Wilson concept of a local order
parameter. The breakdown of the Kondo effect in heavy-fermion metals
constitutes a prime example of such a transition. Here, the strongly correlated
f electrons become localized and disappear from the Fermi surface, implying
that the transition is equivalent to an orbital-selective Mott transition, as
has been discussed for multi-band transition-metal oxides. In this article,
available theoretical descriptions for orbital-selective Mott transitions will
be reviewed, with an emphasis on conceptual aspects like the distinction
between different low-temperature phases and the structure of the global phase
diagram. Selected results for quantum critical properties will be listed as
well. Finally, a brief overview is given on experiments which have been
interpreted in terms of orbital-selective Mott physics.Comment: 29 pages, 4 figs, mini-review prepared for a special issue of JLT
The role of melanin pathways in extremotolerance and virulence of <em>Fonsecaea</em> revealed by <em>de novo</em> assembly transcriptomics using illumina paired-end sequencing
AbstractMelanisation has been considered to be an important virulence factor of Fonsecaea monophora. However, the biosynthetic mechanisms of melanisation remain unknown. We therefore used next generation sequencing technology to investigate the transcriptome and digital gene expression data, which are valuable resources to better understand the molecular and biological mechanisms regulating melanisation in F. monophora. We performed de novo transcriptome assembly and digital gene expression (DGE) profiling analyses of parent (CBS 122845) and albino (CBS 125194) strains using the Illumina RNA-seq system. A total of 17â352 annotated unigenes were found by BLAST search of NR, Swiss-Prot, Gene Ontology, Clusters of Orthologous Groups and Kyoto Encyclopedia of Genes and Genomes (KEGG) (E-value <1eâ5). A total of 2â283 unigenes were judged to be the differentially expressed between the two genotypes. We identified most of the genes coding for key enzymes involved in melanin biosynthesis pathways, including polyketide synthase (pks), multicopper oxidase (mco), laccase, tyrosinase and homogentisate 1,2-dioxygenase (hmgA). DEG analysis showed extensive down-regulation of key genes in the DHN pathway, while up-regulation was noted in the DOPA pathway of the albino mutant. The transcript levels of partial genes were confirmed by real time RT-PCR, while the crucial role of key enzymes was confirmed by either inhibitor or substrate tests in vitro. Meanwhile, numbers of genes involved in light sensing, cell wall synthesis, morphology and environmental stress were identified in the transcriptome of F. monophora. In addition, 3â353 SSRs (Simple Sequence Repeats) markers were identified from 21â600 consensus sequences. Blocking of the DNH pathway is the most likely reason of melanin deficiency in the albino strain, while the production of pheomelanin and pyomelanin were probably regulated by unknown transcription factors on upstream of both pathways. Most of genes involved in environmental tolerance to oxidants, irradiation and extreme temperatures were also assembled and annotated in transcriptomes of F. monophora. In addition, thousands of identified cSSR (combined SSR) markers will favour further genetic linkage studies. In conclusion, these data will contribute to understanding the regulation of melanin biosynthesis and help to improve the studies of pathogenicity of F. monophora
\psi(2S) Decays into \J plus Two Photons
Using \gamma \gamma J/\psi, J/\psi \ra e^+ e^- and events
from a sample of \psip decays collected with the BESII
detector, the branching fractions for \psip\ra \pi^0\J, \eta\J, and
\psi(2S)\ar\gamma\chi_{c1},\gamma\chi_{c2}\ar\gamma\gamma\jpsi are measured
to be B(\psip\ra \pi^0\J) = (1.43\pm0.14\pm0.13)\times 10^{-3}, B(\psip\ra
\eta\J) = (2.98\pm0.09\pm0.23)%,
B(\psi(2S)\ar\gamma\chi_{c1}\ar\gamma\gamma\jpsi) = (2.81\pm0.05\pm 0.23)%,
and B(\psi(2S)\ar\gamma\chi_{c2}\ar\gamma\gamma\jpsi) = (1.62\pm0.04\pm
0.12)%.Comment: 7 pages, 6 figures. submitted to Phys. Rev.
- âŠ