35 research outputs found

    Persistent currents in Moebius strips

    Get PDF
    Relation between the geometry of a two-dimensional sample and its equilibrium physical properties is exemplified here for a system of non-interacting electrons on a Moebius strip. Dispersion relation for a clean sample is derived and its persistent current under moderate disorder is elucidated, using statistical analysis pertinent to a single sample experiment. The flux periodicity is found to be distinct from that in a cylindrical sample, and the essential role of disorder in the ability to experimentally identify a Moebius strip is pointed out.Comment: 5 pages, 4 figure

    Pentagonal nanowires: a first-principles study of atomic and electronic structure

    Full text link
    We performed an extensive first-principles study of nanowires in various pentagonal structures by using pseudopotential plane wave method within the density functional theory. Our results show that nanowires of different types of elements, such as alkali, simple, transition and noble metals and inert gas atoms, have a stable structure made from staggered pentagons with a linear chain perpendicular to the planes of the pentagons and passing through their centers. This structure exhibits bond angles close to those in the icosahedral structure. However, silicon is found to be energetically more favorable in the eclipsed pentagonal structure. These quasi one dimensional pentagonal nanowires have higher cohesive energies than many other one dimensional structures and hence may be realized experimentally. The effect of magnetic state are examined by spin-polarized calculations. The origin of the stability are discussed by examining optimized structural parameters, charge density and electronic band structure, and by using analysis based on the empirical Lennard-Jones type interaction. Electronic band structure of pentagonal wires of different elements are discussed and their effects on quantum ballistic conductance are mentioned. It is found that the pentagonal wire of silicon exhibits metallic band structure.Comment: 4 figures, accepted for publication in Phys. Rev.

    Resonance approximation and charge loading/unloading in adiabatic quantum pumping

    Full text link
    Quantum pumping through mesoscopic quantum dots is known to be enhanced by resonant transmission. The pumped charge is close to an integer number of electrons when the pumping contour surrounds a resonance, but the transmission remains small on the contour. For non-interacting electrons, we give a quantitative account of the detailed exchange of electrons between the dot and the leads (to the electron reservoirs) during a pumping cycle. Near isolated distinct resonances, we use approximate Breit-Wigner expressions for the dot's Green function to discuss the loading/unloading picture of the pumping: the fractional charge exchanged between the dot and each lead through a single resonance point is related to the relative couplings of the dot and the leads at this resonance. If each resonance point along the pumping contour is dominated by the coupling to a single lead (which also implies a very small transmission), then the crossing of each such resonance results in a single electron exchange between the dot and that lead, ending up with a net quantized charge. When the resonance approximation is valid, the fractional charges can also be extracted from the peaks of the transmissions between the various leads.Comment: 10 pages, 4 figure

    National identity predicts public health support during a global pandemic

    Get PDF
    Changing collective behaviour and supporting non-pharmaceutical interventions is an important component in mitigating virus transmission during a pandemic. In a large international collaboration (Study 1, N = 49,968 across 67 countries), we investigated self-reported factors associated with public health behaviours (e.g., spatial distancing and stricter hygiene) and endorsed public policy interventions (e.g., closing bars and restaurants) during the early stage of the COVID-19 pandemic (April-May 2020). Respondents who reported identifying more strongly with their nation consistently reported greater engagement in public health behaviours and support for public health policies. Results were similar for representative and non-representative national samples. Study 2 (N = 42 countries) conceptually replicated the central finding using aggregate indices of national identity (obtained using the World Values Survey) and a measure of actual behaviour change during the pandemic (obtained from Google mobility reports). Higher levels of national identification prior to the pandemic predicted lower mobility during the early stage of the pandemic (r = −0.40). We discuss the potential implications of links between national identity, leadership, and public health for managing COVID-19 and future pandemics.publishedVersio

    Global desertification: building a science for dryland development

    No full text
    In this millennium, global drylands face a myriad of problems that present tough research, management, and policy challenges. Recent advances in dryland development, however, together with the integrative approaches of global change and sustainability science, suggest that concerns about land degradation, poverty, safeguarding biodiversity, and protecting the culture of 2.5 billion people can be confronted with renewed optimism. We review recent lessons about the functioning of dryland ecosystems and the livelihood systems of their human residents and introduce a new synthetic framework, the Drylands Development Paradigm (DDP). The DDP, supported by a growing and well-documented set of tools for policy and management action, helps navigate the inherent complexity of desertification and dryland development, identifying and synthesizing those factors important to research, management, and policy communities
    corecore