7 research outputs found

    Common variants associated with breast cancer in genome-wide association studies are modifiers of breast cancer risk in BRCA1 and BRCA2 mutation carriers

    No full text
    Recent studies have identified single nucleotide polymorphisms (SNPs) that significantly modify breast cancer risk in BRCA1 and BRCA2 mutation carriers. Since these risk modifiers were originally identified as genetic risk factors for breast cancer in genome-wide association studies (GWASs), additional risk modifiers for BRCA1 and BRCA2 may be identified from promising signals discovered in breast cancer GWAS. A total of 350 SNPs identified as candidate breast cancer risk factors (P < 1 × 10−3) in two breast cancer GWAS studies were genotyped in 3451 BRCA1 and 2006 BRCA2 mutation carriers from nine centers. Associations with breast cancer risk were assessed using Cox models weighted for penetrance. Eight SNPs in BRCA1 carriers and 12 SNPs in BRCA2 carriers, representing an enrichment over the number expected, were significantly associated with breast cancer risk (Ptrend < 0.01). The minor alleles of rs6138178 in SNRPB and rs6602595 in CAMK1D displayed the strongest associations in BRCA1 carriers (HR = 0.78, 95% CI: 0.69–0.90, Ptrend = 3.6 × 10−4 and HR = 1.25, 95% CI: 1.10–1.41, Ptrend = 4.2 × 10−4), whereas rs9393597 in LOC134997 and rs12652447 in FBXL7 showed the strongest associations in BRCA2 carriers (HR = 1.55, 95% CI: 1.25–1.92, Ptrend = 6 × 10−5 and HR = 1.37, 95% CI: 1.16–1.62, Ptrend = 1.7 × 10−4). The magnitude and direction of the associations were consistent with the original GWAS. In subsequent risk assessment studies, the loci appeared to interact multiplicatively for breast cancer risk in BRCA1 and BRCA2 carriers. Promising candidate SNPs from GWAS were identified as modifiers of breast cancer risk in BRCA1 and BRCA2 carriers. Upon further validation, these SNPs together with other genetic and environmental factors may improve breast cancer risk assessment in these populations

    Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers

    Get PDF
    Genome-wide association studies of breast cancer have identified multiple single nucleotide polymorphisms (SNPs) that are associated with increased breast cancer risks in the general population. In a previous study, we demonstrated that the minor alleles at three of these SNPs, in FGFR2, TNRC9 and MAP3K1, also confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. Three additional SNPs rs3817198 at LSP1, rs13387042 at 2q35 and rs13281615 at 8q24 have since been reported to be associated with breast cancer in the general population, and in this study we evaluated their association with breast cancer risk in 9442 BRCA1 and 5665 BRCA2 mutation carriers from 33 study centres. The minor allele of rs3817198 was associated with increased breast cancer risk only for BRCA2 mutation carriers [hazard ratio (HR) = 1.16, 95% CI: 1.07-1.25, P-trend = 2.8 x 10(-4)]. The best fit for the association of SNP rs13387042 at 2q35 with breast cancer risk was a dominant model for both BRCA1 and BRCA2 mutation carriers (BRCA1: HR = 1.14, 95% CI: 1.04-1.25, P = 0.0047; BRCA2: HR = 1.18 95% CI: 1.04-1.33, P = 0.0079). SNP rs13281615 at 8q24 was not associated with breast cancer for either BRCA1 or BRCA2 mutation carriers, but the estimated association for BRCA2 mutation carriers (per-allele HR = 1.06, 95% CI: 0.98-1.14) was consistent with odds ratio estimates derived from population-based case-control studies. The LSP1 and 2q35 SNPs appear to interact multiplicatively on breast cancer risk for BRCA2 mutation carriers. There was no evidence that the associations vary by mutation type depending on whether the mutated protein is predicted to be stable or not

    On the position of the digenean family Heronimidae: an inquiry into a cladistic classification of the Digenea

    No full text

    Antigenic Properties of the Human Immunodeficiency Virus Envelope Glycoprotein Gp120 on Virions Bound to Target Cells

    No full text
    corecore