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Genome-wide association studies of breast cancer have identified multiple single nucleotide polymorphisms
(SNPs) that are associated with increased breast cancer risks in the general population. In a previous study,
we demonstrated that the minor alleles at three of these SNPs, in FGFR2, TNRC9 and MAP3K1, also confer
increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. Three additional SNPs rs3817198
at LSP1, rs13387042 at 2q35 and rs13281615 at 8q24 have since been reported to be associated with
breast cancer in the general population, and in this study we evaluated their association with breast
cancer risk in 9442 BRCA1 and 5665 BRCA2 mutation carriers from 33 study centres. The minor allele of
rs3817198 was associated with increased breast cancer risk only for BRCA2 mutation carriers [hazard
ratio (HR) 5 1.16, 95% CI: 1.07–1.25, P-trend 5 2.8 3 1024]. The best fit for the association of SNP
rs13387042 at 2q35 with breast cancer risk was a dominant model for both BRCA1 and BRCA2 mutation
carriers (BRCA1: HR 5 1.14, 95% CI: 1.04–1.25, P 5 0.0047; BRCA2: HR 5 1.18 95% CI: 1.04–1.33, P 5
0.0079). SNP rs13281615 at 8q24 was not associated with breast cancer for either BRCA1 or BRCA2 mutation
carriers, but the estimated association for BRCA2 mutation carriers (per-allele HR 5 1.06, 95% CI: 0.98–1.14)
was consistent with odds ratio estimates derived from population-based case–control studies. The LSP1 and
2q35 SNPs appear to interact multiplicatively on breast cancer risk for BRCA2 mutation carriers. There was
no evidence that the associations vary by mutation type depending on whether the mutated protein is pre-
dicted to be stable or not.
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INTRODUCTION

Pathogenic mutations in BRCA1 and BRCA2 confer high risks
of breast and ovarian cancer. The breast cancer risks for
BRCA1 and BRCA2 mutation carriers have been estimated to
be between 40 and 87% by age 70 (1–7), but there is substan-
tial evidence that these risks are modified by other factors that
also cluster in families. Segregation analysis models have
quantified the extent of variability in the breast cancer risk
for BRCA1 and BRCA2 mutation carriers by means of
polygenic-modifying variances, and suggest that the relative
genetic variation in disease incidence is similar to that for
women from the general population (2). A plausible expla-
nation for this finding is that genetic variants associated with
breast cancer risk for women in the general population also
modify the disease risk for mutation carriers.

To evaluate this hypothesis, the Consortium of Investigators
of Modifiers of BRCA1/2 (CIMBA) evaluated the associations
between the breast cancer risk for mutation carriers and three
common breast cancer susceptibility alleles identified through
genome-wide association studies (GWAS) (8–11). The minor
alleles of single nucleotide polymorphisms (SNPs) in FGFR2,
TNRC9 and MAP3K1 were all found to be associated with
breast cancer risk for BRCA2 mutation carriers, but only the
TNRC9 SNP was associated with breast cancer risk for
BRCA1 mutation carriers. The TNRC9 SNP was estimated to
account for �0.5% of the familial/genetic variance of breast
cancer risk for BRCA1 mutation carriers estimated by segre-
gation analyses, and the three SNPs in FGFR2, TNRC9 and
MAP3K1 for 2.8% of the estimated familial/genetic variance
of breast cancer risk for BRCA2 mutation carriers (8). There-
fore, the large majority of the variability in breast cancer risks
for BRCA1 and BRCA2 remains unexplained. The GWAS by
Easton et al. (9) and Stacey et al. (11) identified three
additional breast cancer susceptibility loci at 8q24, 2q35 and
on 11p15 close to the LSP1 gene. To evaluate whether these
loci are also associated with breast cancer risk for BRCA1
and/or BRCA2 mutation carriers, we genotyped these
disease-associated SNPs in a large series of female carriers
assembled by the CIMBA consortium.

RESULTS

Mutation carriers were recruited by 33 study centres in 21
countries (Table 1). After quality control exclusions, we ana-
lysed data from 8136 carriers censored at a first breast
cancer diagnosis, 1430 individuals censored at an ovarian
cancer diagnosis, 414 censored at bilateral prophylactic mas-
tectomy and 5127 carriers censored at the age at last follow-up
(Table 2). The estimated hazard ratios (HRs) associated with
each SNP are shown in Table 3.

The LSP1 SNP rs3817198 was not associated with an
increased risk of breast cancer for BRCA1 mutation carriers
(P-trend ¼ 0.09), but there was significant evidence of associ-
ation with breast cancer risk for BRCA2 mutation carriers
(P-trend ¼ 0.00028). The estimated association in BRCA2
mutation carriers was consistent with a multiplicative model
in which each copy of the minor allele was estimated to
confer a HR of 1.16 (95% CI: 1.07–1.25). There was some
evidence of heterogeneity in the study HRs for both BRCA1

and BRCA2 mutation carriers (P ¼ 0.002 and 0.013, respect-
ively, Fig. 1). To investigate whether the observed heterogen-
eity was due to the inclusion of several small studies and
whether this influenced our results, we repeated the analysis
by excluding any studies with fewer than 100 BRCA1 or 100
BRCA2 mutation carriers. The results were similar to those
from the overall analysis. The estimated per allele HR for
BRCA1 mutation carriers was 1.05 (95% CI: 0.99–1.12,
P-trend ¼ 0.12) and for BRCA2 it was 1.17 (95% CI: 1.07–
1.27, P-trend ¼ 0.00027). However, there was no longer evi-
dence of heterogeneity in the HRs across studies for either
BRCA1 or BRCA2 (P ¼ 0.06 and 0.18, respectively). There
was no significant evidence that the HRs varied by age for
either BRCA1 or BRCA2 mutation carriers (P ¼ 0.99 and
0.17, respectively).

There was significant evidence that rs13387042 at 2q35 was
associated with breast cancer risk for both BRCA1 and BRCA2
mutation carriers (2df P ¼ 0.003 and 0.015, respectively).
However, for both BRCA1 and BRCA2 mutation carriers, the
estimated risk for carriers homozygous for the risk allele
was lower than the estimated risk for heterozygotes. There-
fore, the effects were not consistent with a multiplicative
model (P ¼ 0.001 for BRCA1, 0.013 for BRCA2). The most
parsimonious model for the association of the risk allele was
a dominant model for both BRCA1 and BRCA2 (P ¼ 0.07
and 0.27, respectively, compared with the general model).
Under the dominant model, the HR for carriers who had a
copy of the A allele at this SNP was estimated to be 1.14
(95% CI: 1.04–1.25, P ¼ 0.0047) for BRCA1 mutation car-
riers and 1.18 (95% CI: 1.04–1.33, P ¼ 0.0079) for BRCA2
mutation carriers. There was no evidence of heterogeneity in
the HRs across studies for BRCA1 mutation carriers (P ¼
0.13), but there was significant evidence of heterogeneity for
BRCA2 mutation carriers (P ¼ 0.9 � 1025; Fig. 2). The het-
erogeneity for BRCA2 mutation carriers remained after the
exclusion of studies with fewer than 100 BRCA2 mutation car-
riers (Phet ¼ 7 � 1025); this finding was largely driven by the
UCI study (Phet ¼ 0.44 after excluding UCI). Exclusion of this
study, however, made little difference to the overall HR esti-
mates (P-dominant ¼ 0.014, HR ¼ 1.18, 95% CI: 1.03–
1.34). There was no evidence that the HRs varied by age
(P ¼ 0.86 and 0.34 for BRCA1 and BRCA2, respectively).

SNP rs13281615 at 8q24 was not associated with breast
cancer risk for either BRCA1 or BRCA2 mutation carriers
(P-trend ¼ 0.88 and 0.15, respectively). The estimated per
allele HR for BRCA1 mutation carriers was 1.00 (95% CI:
0.94–1.05) and for BRCA2 mutation carriers it was 1.06
(95% CI: 0.98–1.14). There was evidence of heterogeneity
in the HRs across studies for BRCA1, but not for BRCA2
mutation carriers (P-heterogeneity¼0.0002 and 0.59, respect-
ively; Fig. 3). There was also evidence that the per-allele HR
in BRCA1 mutation carriers decreased with age (P-trend ¼
0.002). However, this was mainly driven by a significant
association for women aged 60–69 years (HR ¼ 0.68, 95%
CI: 0.52–0.90; Supplementary Material, Table S1).

To investigate whether the inclusion of prevalent cancer
cases influenced our HR estimates, we repeated the analysis
after excluding carriers diagnosed with breast or ovarian
cancer more than 5 years prior to recruitment, leaving 6507
BRCA1 carriers (4086 unaffected, 2421 affected) and 3997
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BRCA2 carriers (2386 unaffected, 1611 affected). The HR
estimates were similar to those from the analysis which
included all cancer cases (Supplementary Material, Table S2).

Approximately 72% of the BRCA1 mutation carriers har-
boured class 1 mutations and 22% class 2 mutations, and the
remainder of mutations were unclassifiable. To investigate
whether there were differences in the strength of the associ-
ations by mutation type, we carried out separate analyses for
BRCA1 class 1 and class 2 mutations (Table 4). rs13281615
(8q24) and rs3817198 (LSP1) were not associated with
breast cancer risk for either class1 or class 2 mutation carriers,
consistent with the analysis in which all BRCA1 mutation car-
riers were combined. The 2q35 SNP (rs13387042) appeared to
be more strongly associated with breast cancer risk for BRCA1
class 2 mutation carriers (under dominant model: HR ¼ 1.30,
95% CI: 1.06–1.60, P ¼ 0.013) than class 1 mutation
carriers (HR ¼ 1.10, 95% CI: 0.99–1.23, P ¼ 0.069), but
the difference in HR was not statistically significant
(P ¼ 0.17). The number of BRCA2 mutation carriers harbour-
ing class 2 mutations was too small to warrant separate
analyses.

We also conducted analyses restricted to carriers of the most
frequent mutations, 185delAG and 5382insC in BRCA1 (2532
carriers) and 6174delT in BRCA2 (834 carriers). The estimated
HRs did not differ from those for the overall study (results not
shown).

To evaluate the combined associations of rs3817198 in
LSP1 and rs13387042 at 2q35 on breast cancer risk for
BRCA2 mutation carriers, we fitted a multiplicative model
that included a HR parameter for the effect of each SNP and
compared this against a fully saturated model which included
a separate HR parameter for each combined genotype
(Table 5). The genotype-specific HR ratio estimates for the
combined associations of these SNPs were similar with the
multiplicative and saturated models, and there was no evi-
dence that the fully saturated model gave a better fit than
the multiplicative model (P ¼ 0.16, 6df).

DISCUSSION

Three GWAS in 2007 identified six loci with common SNPs
that are associated with increased breast cancer risk (9–11).

Table 1. Number of eligible BRCA1 and BRCA2 carriers by study group

Study Countrya BRCA1, N BRCA2, N Genotyping
platform

Medical University of Vienna (MUV) Austria 284 122 iPLEXb

Breast Cancer Family Registry (BCFR) USA, Canada, Australia 499 359 Taqman
Copenhagen Breast Cancer Study (CBCS) Denmark 92 51 Taqman
Spanish National Cancer Centre (CNIO) Spain, Greece 170 199 Taqman
Deutsches Krebsforschungszentrum (DKFZ) Germany 68 27 Taqman
HEreditary Breast and Ovarian study Netherlands (HEBON) The Netherlands 769 294 iPLEXb

EMBRACE UK, Eire 807 634 iPLEXb

Fox Chase Cancer Centre (FCCC) USA 81 54 iPLEXb

German Consortium of Hereditary Breast and Ovarian Cancer (GC-HBOC) Germany 802 378 Taqman
Genetic Modifiers of cancer risk in BRCA1/2 mutation carriers (GEMO) France, USA 1123 567 Taqman
Gynecologic Oncology Group (GOG) USA 398 282 Taqman
Hospital Clinico San Carlos (HCSC) Spain 109 94 Taqman
Helsinki Breast Cancer Study (HEBCS) Finland 102 104 iPLEXb

Iceland Landspitali—University Hospital (ILUH) Iceland 0 87 Sequencing
Interdisciplinary Health Research International Team Breast Cancer Susceptibility

(INHERIT BRCAs)
Quebec, Canada 73 82 Taqman

kConFab Australia 489 390 iPLEXb

University of California Irvine (UCI) USA 168 121 Taqman
Mayo Clinic (MAYO) USA 213 118 iPLEXb

Milan Breast Cancer Study Group (MBCSG) Italy 346 218 Taqman
Memorial Sloane Kettering Cancer Center (MSKCC) USA 258 155 Taqman
National Cancer Institute (NCI) USA 156 73 Taqman
National Israeli Cancer Control Center (NICCC) Israel 315 200 Taqman
Ontario Cancer Genetics Network (OCGN) Canada 219 171 Taqman
Ohio State University Clinical Cancer Center (OSU CCG) USA 60 31 Taqman
Odense University Hospital (OUH) Denmark 216 132 Taqman
Pisa Breast Cancer Study (PBCS) Italy 73 41 iPLEXb

Istituto Oncologico Veneto—Hereditary Breast Ovarian Cancer Study (IOVHBOCS) Italy 95 88 Taqman
Sheba Medical Centre (SMC)—Tel Hashomer Israel 400 190 Taqman
Swedish Breast Cancer Study (SWE-BRCA) Sweden 413 121 iPLEXb

N.N. Petrov Institute of Oncology (NNPIO) Russia 67 0 Taqman
Modifier Study of Quantitative Effects on Disease (ModSQuaD) Czech Republic,

Belgium
272 130 Taqman

University of Turin Breast Cancer Study (UTBCS) Italy 60 43 Taqman
University of Pennsylvania (UPENN) USA 245 109 iPLEXb

Total 9442 5665

aCountry of the clinic at which carriers are recruited.
bIndicates centralized genotyping (Queensland Institute of Medical Research).
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We previously evaluated SNPs at three of these loci (FGFR2,
TNRC9, MAP3K1) in BRCA1 and BRCA2 carriers (8). In the
present analysis we evaluated the SNPs in the three additional
loci for association with breast cancer risk for carriers. Our
results provide evidence that rs3817198 in LSP1 is associated
with breast cancer risk for BRCA2 mutation carriers, but we
found no evidence of an association for BRCA1 mutation car-
riers. The 95% CI for the HR estimates, however, included the
estimated odds ratio (OR) from population-based studies (1.07
(9)). For the SNP at 2q35, we found evidence of association
for both BRCA1 and BRCA2 mutation carriers. The estimated
HR for homozygotes was lower than that for heterozygotes,
such that a log-additive model was rejected. This was in con-
trast to the population-based studies which clearly showed a
higher risk for homozygotes (11,12). The effect did not
appear to be driven by any particular study: the heterozygote
HR estimate was greater than, or equal to, the HR in the homo-
zygotes for 19 of the studies, including 4 of the largest studies
(BCFR, EMBRACE, GEMO and GC-HBOC). This effect was
also observed in analyses subdivided by mutation class, and
when prevalent cases were excluded. It is possible that this
departure from log-additivity is due to chance, although it
might also reflect some distinct mechanism that operates
only in mutation carriers. It may be possible to clarify this
once the causal variant(s) are identified, and/or by studying
larger numbers of carriers. The two SNPs in LSP1 and 2q35
appeared to interact multiplicatively on the breast cancer
risk for BRCA2 mutation carriers. Finally, the 8q24 SNP
was not significantly associated with risk for either BRCA1

or BRCA2 carriers. Although the CI for BRCA1 carriers
excludes the estimated OR from population-based studies
(1.08), the 95% CI HR estimate for BRCA2 carriers (0.98–
1.14) includes this estimate.

There was significant evidence of heterogeneity in the HR
estimates across studies for the associations of rs3817198
(LSP1) and rs13387042 (2q35) for BRCA2 mutation carriers.
This heterogeneity is unlikely to be due to genotyping
quality issues as all genotyping centres were required to
adhere to strict genotyping quality control criteria, and
studies which failed these criteria were excluded from the ana-
lyses. Our analyses indicate that much of the heterogeneity
was driven by studies with small numbers of mutation carriers
(Table 1). When studies with fewer than 100 mutation carriers
were excluded from the analysis there was no longer evidence
of heterogeneity in the HRs across studies for the LSP1 SNP,
and yet the results remained virtually unchanged. The
heterogeneity in the HR estimates for rs13387042 (2q35) and
breast cancer risk for BRCA2 mutation carriers was largely
due to one study (UCI) with 121 BRCA2 carriers; removal of
this study, however, did not materially affect the overall associ-
ation. We conclude that the associations we observed are likely
to apply broadly to mutation carriers of European origin.

In our analysis of the FGFR2, TNRC9 and MAP3K1 loci,
we noted that the differences in the associations between
BRCA1 and BRCA2 mutation carriers may reflect the differ-
ences in the distribution of tumour subtype. Approximately
90% of BRCA1 breast cancer tumours have been reported to
be estrogen receptor (ER)-negative whereas tumours in

Table 2. Summary characteristics for the 15 107 eligible BRCA1 and BRCA2 carriers used in the analysis

Characteristic BRCA1 BRCA2
Unaffected Breast cancer Unaffected Breast cancer

Number 4462 4980 2509 3156
Person-years follow-up 190 973 203 416 111 555 139 078
Median age at censure (IQRa) 41 (34–50) 40 (34–46) 43 (35–53) 43 (37–50)
Age at censure, N (%)

,30 630 (14.1) 444 (8.9) 322 (12.8) 149 (4.7)
30–39 1284 (28.8) 2027 (40.7) 677 (27.0) 991 (31.4)
40–49 1338 (30.0) 1702 (34.2) 694 (27.7) 1184 (37.5)
50–59 776 (17.4) 603 (12.1) 467 (18.6) 570 (18.1)
60–69 287 (6.4) 155 (3.1) 225 (9.0) 206 (6.5)
70þ 147 (3.3) 49 (1.0) 124 (4.9) 56 (1.8)

Year of birth, N (%)
,1920 32 (0.7) 43 (0.9) 20 (0.8) 37 (1.2)
1920–1929 124 (2.8) 193 (3.9) 89 (3.6) 157 (5.0)
1930–1939 326 (7.3) 459 (9.2) 216 (8.6) 396 (12.6)
1940–1949 685 (15.4) 1163 (23.4) 356 (14.2) 776 (24.6)
1950–1959 1062 (23.8) 1568 (31.5) 594 (23.7) 984 (31.2)
1960þ 2233 (50.0) 1554 (31.2) 1234 (49.2) 806 (25.5)

Mutation class, N (%)
Class 1b 3388 (75.9) 3387 (68.0) 2367 (94.3) 2926 (92.7)
Class 2b 838 (18.8) 1222 (24.5) 52 (2.1) 80 (2.5)
Other 236 (5.3) 371 (7.5) 90 (3.6) 150 (4.8)

Mutation description, N (%)
Ashkenazi Jewishc 1210 (27.1) 1322 (26.6) 440 (17.5) 394 (12.5)
Other 3252 (72.9) 3658 (73.5) 2069 (82.5) 2762 (87.5)

aIQR, interquartile range.
bSee methods for definitions.
cAshkenazi Jewish includes 185delAG and 5382insC for BRCA1 and 6174 delT for BRCA2.
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Figure 1. Study-specific per-allele HR estimates for SNP rs3817198 in LSP1. The area of the square is proportional to the inverse of the variance of the estimate.
Horizontal lines represent the 95% confidence intervals.

Table 3. Genotype frequencies by disease status and HR estimates

Mutation/gene Genotype Unaffected (%) Affected (%) HR 95% CI P-value

LSP1 rs3817198
BRCA1 TT 1940 (46.2) 2114 (44.2) 1.00

TC 1810 (43.0) 2112 (44.2) 1.05 0.96–1.13
CC 453 (10.8) 555 (11.6) 1.11 0.97–1.27
2df test 0.24
Per allele 1.05 0.99–1.11 0.090

BRCA2 TT 1090 (45.3) 1283 (42.3) 1.00
TC 1057 (44.0) 1375 (45.4) 1.11 1.00–1.24
CC 257 (10.7) 372 (12.3) 1.39 1.16–1.67
2df test 0.00098
Per allele 1.16 1.07–1.25 0.00028

2q35 rs13387042
BRCA1 GG 1029 (24.1) 1007 (21.1) 1.00

GA 2034 (47.7) 2423 (50.9) 1.18 1.07–1.30
AA 1205 (28.2) 1333 (28.0) 1.08 0.97–1.21
2df test 0.003
Per allele 1.03 0.98–1.09 0.24
Dominant 1.14 1.04–1.25 0.0047

BRCA2 GG 604 (25.1) 672 (22.1) 1.00
GA 1143 (47.5) 1526 (50.2) 1.21 1.06–1.37
AA 660 (27.4) 844 (27.7) 1.12 0.97–1.31
2df test 0.015
Per allele 1.06 0.98–1.14 0.14
Dominant 1.18 1.04–1.33 0.0079

8q24 rs13281615
BRCA1 AA 1366 (32.1) 1581 (33.2) 1.00

AG 2135 (50.2) 2325 (48.8) 0.96 0.88–1.04
GG 753 (17.7) 856 (18.0) 1.01 0.90–1.13
2df test 0.54
Per allele 1.00 0.94–1.05 0.88

BRCA2 AA 821 (34.1) 938 (31.0) 1.00
AG 1182 (49.1) 1547 (51.1) 1.07 0.95–1.20
GG 405 (16.8) 540 (17.9) 1.11 0.96–1.29
2df test 0.35
Per allele 1.06 0.98–1.14 0.15
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BRCA2 mutation carriers have an ER distribution similar to
those arising in women from the general population, the
majority of which are ER-positive (13). All three SNPs were
associated with risk in BRCA2 carriers, whereas only the
TNRC9 SNP was associated with risk in BRCA1 carriers, con-
sistent with the differences in association between ER-positive
and ER-negative disease reported by the Breast Cancer
Association Consortium (BCAC) (8,14). BCAC has also
investigated the associations of the LSP1 and 8q24 SNPs by
the ER status of cancer cases (14). For the 8q24 SNP, the

association was stronger for ER-positive disease, with no evi-
dence of an association for ER-negative disease. Although we
did not detect a significant difference in the HR estimates
between BRCA1 and BRCA2 carriers, the absence of an associ-
ation for BRCA1 carriers (HR 1.0) and the proximity of the HR
estimate derived from 5665 BRCA2 carriers (1.06) to that
reported from the population-based studies (1.08) is consistent
with the differential effect of this SNP between ER-positive
and ER-negative disease. BCAC did not observe a significant
difference between ER-positive and ER-negative disease for

Figure 2. Study-specific HR estimates for SNP rs13387042 at 2q35 under the dominant model. The area of the square is proportional to the inverse of the var-
iance of the estimate. Horizontal lines represent the 95% confidence intervals.

Figure 3. Study-specific per-allele HR estimates for SNP rs13281615 at 8q24. The area of the square is proportional to the inverse of the variance of the estimate.
Horizontal lines represent the 95% confidence intervals.
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the effect of the LSP1 SNP rs3817198 (14), although the esti-
mated OR was higher for ER-positive than ER-negative
disease. Therefore, our observation that this SNP is only
associated with breast cancer risk for BRCA2 mutation carriers
is also consistent with the BCAC results. Stacey et al. (11)

reported that SNP rs13387042 at 2q35 was associated only
with risk of ER-positive breast cancer. Recent results from
the much larger BCAC study, however, indicated that this
SNP is associated with the risk of both ER-positive and
ER-negative disease (12), a result that is more consistent
with our observation of an association with disease for both
BRCA1 and BRCA2 carriers. Overall, the results for these
three SNPs are consistent with the hypothesis that the breast
cancer relative risks conferred by these SNPs are broadly
similar for BRCA1 and BRCA2 carriers to those conferred on
women from the general population, considering ER-positive
and ER-negative disease separately.

In summary, of the common breast cancer susceptibility
variants identified by GWAS evaluated to date, the present
and previous (8) results indicate that SNPs in FGFR2,
TNRC9, MAP3K1, LSP1 and 2q35 are all associated with
breast cancer risk for BRCA2 mutation carriers, but only the
TNRC9 and 2q35 SNPs show evidence of association with
breast cancer risk for BRCA1 mutation carriers. Based on
the estimated HRs, and estimates of the genetic variance of
breast cancer risk for BRCA1 and BRCA2 mutation carriers,
it is predicted that the five SNPs would account for 3.7% of
the BRCA2 genetic-modifying variance. The TNRC9 and

Table 4. BRCA1 analysis by mutation class

Mutation/gene Genotype Unaffected (%) Affected (%) HR 95% CI P-value

LSP1 rs3817198
BRCA1—Class 1 TT 1476 (46.4) 1421 (43.7) 1.00

TC 1353 (42.5) 1445 (44.5) 1.05 0.96–1.16
CC 353 (11.1) 382 (11.8) 1.12 0.96–1.29
2df test 0.27
Per allele 1.06 0.99–1.13 0.11

BRCA1—Class 2 TT 347 (44.1) 531 (45.7) 1.00
TC 362 (46.1) 504 (43.3) 0.95 0.79–1.15
CC 77 (9.8) 128 (11.0) 1.11 0.81–1.53
2df test 0.63
Per allele 1.02 0.88–1.17 0.82

2q35 rs13387042
BRCA1—Class 1 GG 791 (24.4) 717 (22.1) 1.00

GA 1550 (47.8) 1620 (50.0) 1.13 1.01–1.26
AA 899 (27.8) 904 (27.9) 1.07 0.94–1.21
2df test 0.11
Per Allele 1.03 0.97–1.10 0.37
Dominant 1.10 0.99–1.23 0.069

BRCA1—Class 2 GG 186 (23.3) 218 (18.8) 1.00
GA 379 (47.4) 608 (52.3) 1.35 1.09–1.67
AA 234 (29.3) 336 (28.9) 1.21 0.95–1.56
2df test 0.021
Per allele 1.08 0.95–1.22 0.22
Dominant 1.30 1.06–1.60 0.013

8q24 rs13281615
BRCA1—Class 1 AA 1044 (32.2) 1083 (33.4) 1.00

AG 1635 (50.4) 1582 (48.7) 0.95 0.87–1.05
GG 564 (17.4) 582 (17.9) 1.01 0.88–1.15
2df test 0.54
Per allele 1.00 0.93–1.06 0.91

BRCA1—Class 2 AA 246 (31.2) 376 (32.4) 1.00
AG 397 (50.3) 566 (48.8) 0.98 0.82–1.17
GG 146 (18.5) 218 (18.8) 1.01 0.79–1.30
2df test 0.95
Per allele 1.00 0.89–1.13 0.98

Genotype frequencies and HR estimates.

Table 5. HR estimates for the combined effects of LSP1 and 2q35 on breast
cancer risk for BRCA2 mutation carriers

LSP1/2q35 genotype Hazard ratio
Multiplicative modela Saturated model

TT/GG 1.00 1.00
TT/GA 1.14 1.09
TT/AA 1.14 1.24
TC/GG 1.16 1.20
TC/GA 1.32 1.35
TC/AA 1.32 1.18
CC/GG 1.34 1.14
CC/GA 1.53 1.64
CC/AA 1.53 1.60

aHR estimates under multiplicative mode; LSP1: per-allele HR ¼ 1.16
(1.07–1.26); 2q35 dominant HR ¼ 1.14 (1.02–1.27).
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2q35 SNPs are estimated to account for 0.7% of the BRCA1
genetic modifying variance. These findings suggest that the
majority of the genetic variability in breast cancer risk for
BRCA1 and BRCA2 mutation carriers still remains unex-
plained and future studies to identify further genetic modifiers
of risk will be worthwhile.

MATERIALS AND METHODS

Subjects

Subjects were mutation carriers recruited by 33 study centres
in 21 countries through the CIMBA initiative (Table 1). The
large majority of carriers were recruited through cancer gen-
etics clinics offering genetic testing, and enrolled into national
(Australia, Austria, France, Netherlands, UK/Eire) or regional
studies. Some carriers were identified by population-based
sampling of cases, and some by community recruitment (e.g.
in Ashkenazi Jewish populations). Eligibility to participate
in CIMBA was restricted to carriers of pathogenic BRCA1
or BRCA2 mutations who were 18 years old or older at recruit-
ment. Information collected included the year of birth;
mutation description, including nucleotide position and base
change; age at last follow-up; ages at breast and ovarian
cancer diagnosis; and age or date at bilateral prophylactic mas-
tectomy. Information was also available on the country of resi-
dence, which was defined to be the country of the clinic at
which the carrier family was recruited to the study. Related
individuals were identified through a unique family identifier.
Women were included in the analysis if they carried mutations
that were pathogenic according to generally recognized cri-
teria (15) (Breast Cancer Information Core). All carriers par-
ticipated in clinical or research studies at the host
institutions under ethically approved protocols. Further
details of the CIMBA initiative can be found elsewhere (16).

Women who self-reported as ‘non-white’ and those who
carried pathogenic mutations in both BRCA1 and BRCA2
were excluded from the current analysis. We investigated
possible overlap between studies by comparing the year of
birth, exact mutation description and the reported ages, to
identify potential duplicate individuals. Where possible, we
also used SNP genotype data available within the CIMBA
database. When a potential duplicate was identified, we con-
tacted the relevant centres for further information about
these individuals, in a manner that protected the identity of
the individuals in question, in order to determine precisely
the extent of true overlap in subjects and families appearing
more than once in the data set. Duplicated mutation carriers
were included only once in the analysis. To avoid inclusion
of families extending over several studies, we included the
individual in the study with the most complete version of
the family. 106 mutation carriers were excluded for this
reason.

Genotyping

The genotyping platforms used by each study are shown in
Table 1. The DNA samples from 10 studies were genotyped
using the iPLEX Mass Array platform at a single genotyping
centre. One study genotyped by direct sequencing. All remain-

ing studies used the 50 endonuclease assay (Taqman), with
reagents supplied by Applied Biosystems and tested centrally.
All centres included at least 2% of the samples in duplicate, no
template controls in every plate and a random mixture of
affected and unaffected carriers. Samples that failed for two
or more of the SNPs genotyped (or �20% of the SNPs
typed if more than three SNPs were analysed using multi-
PLEX genotyping platforms) were excluded from the analysis.
A study was included in the analysis only if the call rate was
over 95% after samples that failed at multiple SNPs had been
excluded. The concordance between duplicates had to be at
least 98%. To assess the accuracy of genotyping across geno-
typing centres, all centres genotyped 95 DNA samples from a
standard test plate (Coriell Institute) for all three SNPs. If the
genotyping was inconsistent for more than one sample in the
test plate, the study was excluded from the analysis of that
SNP. Three studies failed these criteria for one or more of
the SNPs. One study was excluded from all three SNP ana-
lyses, another from the analysis of rs13281615 and
rs13387042 and one from the analysis of rs13387042. As an
additional genotyping quality-control check, we also evaluated
the deviation from Hardy–Weinberg equilibrium (HWE) for
unrelated subjects separately for each SNP and study. For
one study, the HWE P-value for rs3817198 was P ¼ 2 �
10213 and this study excluded from the analysis of that
SNP. If HWE P-values were in the range 0.01–0.05 (six
studies for the 8q24 SNP and four studies for the LSP1
SNP) we examined the cluster plots; none revealed any
unusual patterns and these studies were included in all the ana-
lyses. After the above exclusions a total of 15 107 unique
mutation carriers (9442 BRCA1 and 5665 BRCA2) from 33
studies had an observed genotype for at least of one of the
SNPs and were therefore included in the analysis (Table 1).

Statistical analysis

The aim of the analysis was to evaluate the association
between each genotype and breast cancer risk. The phenotype
of each individual was therefore defined by their age at diag-
nosis of breast cancer or their age at last follow-up. For this
purpose, individuals were censored at the age of the first
breast cancer diagnosis, ovarian cancer diagnosis, or bilateral
prophylactic mastectomy or the age at last observation.
Mutation carriers censored at ovarian cancer diagnosis were
considered unaffected. Since mutation carriers were not
sampled randomly with respect to their disease status, standard
methods of survival analysis (such as Cox regression) may
lead to biased estimates of the HRs (17). This can be illus-
trated by considering an individual affected at age t. In a stan-
dard analysis of a cohort study, the SNP genotype for the
individual will be compared with those of all individuals at
risk at age t. This analysis leads to consistent estimates of
the HR. However, in the present design, mutation carriers
are already selected on the basis of disease status (where
affected individuals are over-sampled). If standard cohort
analysis were applied to these data, it would lead to affected
individuals at age t being compared with unaffected carriers
selected on the basis of their future disease status. If the gen-
otype is associated with the disease, the risk estimate will be
biased to zero because too many affected individuals (in
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whom the at-risk genotype is overrepresented) are included in
the comparison group. Simulation studies have shown that this
effect can be quite marked (17). We therefore conducted the
analysis by modelling the retrospective likelihood of the
observed genotypes conditional on the disease phenotypes.
The derivation of the retrospective likelihood is described in
detail elsewhere (15). In this model, the breast cancer inci-
dence was assumed to depend on the underlying SNP geno-
type through a Cox proportional hazards model: li (t) ¼ l0

(t) exp (bi), where exp(bi) is the HR for genotype i and
l0(t) is the breast cancer incidence rate in the baseline cat-
egory. Under this approach, the baseline age-specific inci-
dence rates in the Cox proportional-hazards model were
chosen such that the overall breast cancer incidence rates,
averaged over all genotypic categories, agree with external
estimates of incidence for BRCA1 and BRCA2 mutation
carriers (2). The effect of each SNP was modelled either as
a per-allele HR (multiplicative model) or as separate HRs
for heterozygotes and homozygotes, and these were estimated
on the log scale (i.e. bi). Where there was evidence of devi-
ation from the multiplicative model, dominant and recessive
models were also fitted. The HRs were assumed to be indepen-
dent of age (i.e. we used a Cox proportional-hazards model).
The assumption of proportional hazards was tested by
adding a ‘genotype x age’ interaction term to the model in
order to fit models in which the HR changed with age. Ana-
lyses were carried out with the pedigree-analysis software
MENDEL (18). We examined between-study heterogeneity
by comparing the models that allowed for study-specific
log-HRs against models in which the same log-HR was
assumed to apply to all studies. All analyses were stratified
by study group and country of residence and used
calendar-year- and cohort-specific breast cancer incidence
rates for BRCA1 and BRCA2 (2). We used a robust
variance-estimation approach to allow for the non-
independence among related carriers (19). The median
family size in our sample was 1 (inter-quartile range: 1–2).
To evaluate the combined effects of the significant SNPs on
breast cancer risk, we fitted a multiplicative (log-additive)
model that included a parameter for the log-HR for each of
the SNPs (depending on the locus specific genetic model)
and compared this with a fully saturated model in which a sep-
arate parameter was fitted for each multi-locus genotype.

To investigate whether our results were influenced by any of
our assumptions we performed additional sensitivity analyses.
If any of the SNPs were associated with disease survival, the
inclusion of prevalent cases may influence the HR estimates.
We therefore repeated our analysis by excluding mutation car-
riers diagnosed more than 5 years prior to the age at recruit-
ment into the study. To examine whether SNP associations
differed by type of mutations, we classified mutations accord-
ing to their potential functional effect. Class 1 mutations com-
prised loss-of-function mutations, expected to result in a
reduced transcript or protein level due to mRNA nonsense-
mediated decay (NMD) and/or degradation or instability of
truncated proteins (20–23), translation re-initiation but no pro-
duction of stable protein (24), or the absence of expression
because of the deletion of transcription regulatory regions.
Class 2 mutations were those likely to generate potentially
stable mutant proteins that might have dominant negative

action, partially preserved normal function, or loss of function.
Class 2 mutations include missense substitutions, in-frame del-
etions and insertion, as well as truncating mutations with pre-
mature stop codons occurring in the last exon (22). Mutations,
whose consequences at transcript or protein level could not be
inferred, were not considered for this classification. These
were mainly mutations located in splice sites but not charac-
terised for their effect at transcript level, or large deletions
or insertions with undetermined boundaries. Additional ana-
lyses were performed by restricting to carriers of the mutations
185delAG and 5382insC in BRCA1 and 6174delT in BRCA2,
which were the most frequent mutations observed.

The proportions of the modifying variance explained by the
set of associated SNPs were estimated by ln(c)/s2, where c is
the estimated coefficient of variation in incidences associated
with SNP (25,26) and s2 is the estimated modifying variance
[1.32 and 1.73 for BRCA1 and BRCA2 mutation carriers, respect-
ively (2)]. We estimated the total proportion of the modifying
variance due to all SNPs by adding the individual proportions,
i.e. by assuming that the loci combined multiplicatively.

WEB RESOURCES

Breast Cancer Information Core, http://research.nhgri.nih.gov/
projects/bic/.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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