1,336 research outputs found

    3D printing endobronchial models for surgical training and simulation

    Get PDF
    Lung cancer is the leading cause of cancer-related deaths. Many methods and devices help acquire more accurate clinical and localization information during lung interventions and may impact the death rate for lung cancer. However, there is a learning curve for operating these tools due to the complex structure of the airway. In this study, we first discuss the creation of a lung phantom model from medical images, which is followed by a comparison of 3D printing in terms of quality and consistency. Two tests were conducted to test the performance of the developed phantom, which was designed for training simulations of the target and ablation processes in endochonchial interventions. The target test was conducted through an electromagnetic tracking catheter with navigation software. An ablation catheter with a recently developed thermochromic ablation gel conducted the ablation test. The results of two tests show that the phantom was very useful for target and ablation simulation. In addition, the thermochromic gel allowed doctors to visualize the ablation zone. Many lung interventions may benefit from custom training or accuracy with the proposed low-cost and patient-specific phantom

    Liquid film thickness behaviour within a large diameter vertical 180° return bend

    Get PDF
    Experimental results of liquid film thickness distribution of an air–water mixture flowing through a vertical 180° return bend are reported. Measurements of liquid film thickness were achieved using flush mounted pin and parallel wire probes. The bend has a diameter of 127 mm and a curvature ratio (R/D) of 3. The superficial velocities of air ranged from 3.5 to 16.1 m/s and those for water from 0.02 to 0.2 m/s. At these superficial velocity ranges, the flow pattern investigated in this work focused on churn and annular flows. It was found that at liquid and gas superficial velocities of 0.02 m/s and 6.2 m/s, respectively, the averaged liquid film thickness peak at 90°. At gas superficial velocity of 16.1 m/s, the relationship between them is linear due to the shear forces overcoming gravity. Additionally, it was found that deposition of entrained droplets keeps the liquid film on the outside of the bend. The results of polar plots of average liquid film thickness in the bend showed that the distribution of the liquid film is not symmetrical with thicker films on the inside of the bend due to the action of gravity. Experimental results on average liquid film thickness showed good agreement with the simulation data reported in the literature

    Graphene oxide functionalized long period fiber grating for highly sensitive hemoglobin detection

    Get PDF
    We present graphene oxide (GO) nanosheets functionalized long period grating (LPG) for ultrasensitive hemoglobin sensing. The sensing mechanism relies on the measurement of LPG resonant intensity change induced by the adsorption of hemoglobin molecules onto GO, where GO as a bio-interface linkage provides the significant light-matter interaction between evanescent field and target molecules. The deposition technique based on chemical-bonding associated with physical-adsorption was developed to immobilize GO nanosheets on cylindrical fiber device. The surface morphology was characterized by scanning electron microscope, atomic force microscopy, and Raman spectroscopy. With relatively thicker GO coating, the refractive index (RI) sensitivity of GO-LPG was extremely enhanced and achieved −76.5 dB/RIU, −234.2 dB/RIU and +1580.5 dB/RIU for RI region of 1.33-1.38, 1.40-1.44 and 1.45-1.46, respectively. The GO-LPG was subsequently implemented as an optical biosensor to detect human hemoglobin giving a sensitivity of 1.9 dB/(mg/mL) and a detectable concentration of 0.05 mg/mL, which was far below the hemoglobin threshold value for anemia defined by World Health Organization. The proposed GO-LPG architecture can be further developed as an optical biosensing platform for anemia diagnostics and biomedical applications

    Immigration Policy and the Health of Latina Mothers and Their Infants

    Get PDF
    Restrictive immigration policies may adversely affect the health of Latina mothers and their infants. We hypothesized that undocumented Latina mothers and their US born children would have worse birth outcomes and healthcare utilization following the November 2016 election. We used a controlled interrupted time series to estimate the impact of the 2016 presidential election on low birth weight (LBW), preterm birth, maternal depression, well child visit attendance, cancelled visits, and emergency department (ED) visits among infants born to Latina mothers on emergency Medicaid, a proxy for undocumented immigration status. There was a 5.8% (95% CI: −0.99%, 12.5%) increase in LBW and 4.6% (95% CI: −1.8%, 10.9%) increase in preterm births immediately after the 2016 election compared to controls. While these findings were not statistically significant at p < 0.05, the majority of our data suggest worsened birth outcomes among undocumented Latina mothers after the election, consistent with larger prior studies. There was no difference in well child or ED visits. While restrictive policies may have contributed to worse birth outcomes among undocumented Latina mothers, our findings suggest that Latino families still attend infants’ scheduled visits. © 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature

    Initial clinical experience with Myxo-ETlogix∗∗Myxo-ETlogix is a trade name of Edwards Lifesciences LLC, Irvine, Calif. mitral valve repair ring

    Get PDF
    ObjectiveComplexity of mitral valve repair for myxomatous disease has led to low adoption. We report initial experience with a new ring designed specifically for myxomatous disease, the Myxo-ETlogix (Edwards Lifesciences LLC, Irvine, Calif).MethodsFrom March 15, 2006, through November 19, 2007, 129 patients underwent mitral valve surgery for pure myxomatous disease, and 124 valves (96.1%) were repaired. The Myxo-ETlogix ring was used in 100 cases and the Physio ring (Edwards) in 24. The Myxo-ETlogix design includes a 3-dimensional shape to reduce systolic anterior motion and a larger orifice to accommodate elongated leaflets and decrease need for sliding plasty. Direct mitral valve measurements were made. Sizing was based on A2 height, and choice of ring type was based on unresected leaflet heights.ResultsThere was no operative mortality or lasting perioperative morbidity. The Myxo-ETlogix group had taller A2, P1, P2, and P3 leaflet segments than the Physio group (P ≀ .003). Only 1 sliding plasty was performed for asymmetry in the Myxo-ETlogix group. Predischarge and follow-up echocardiograms (n = 338 in 124 patients) disclosed transient nonobstructive chordal systolic anterior motion in 3 echocardiograms in 3 patients. No patients had 2+ or greater mitral regurgitation. At discharge, 5.7% had 1+ mitral regurgitation; this proportion was 17.3% at last follow-up (mean 6.1 ± 4.4 months).ConclusionIn initial experience with the Myxo-ETlogix ring, nonobstructive systolic anterior motion has been rare and obstructive systolic anterior motion not observed. Ongoing prospective echocardiographic and clinical studies will elucidate the role of this etiology-specific ring

    An effective local routing strategy on the BA network

    Full text link
    In this paper, We propose a effective routing strategy on the basis of the so-called nearest neighbor search strategy by introducing a preferential delivering exponent alpha. we assume that the handling capacity of one vertex is proportional to its degree when the degree is smaller than a cut-off value KK, and is infinite otherwise. It is found that by tuning the parameter alpha, the scale-free network capacity measured by the order parameter is considerably enhanced compared to the normal nearest-neighbor strategy. Traffic dynamics both near and far away from the critical generating rate R_c are discussed. We also investigate R_c as functions of m (connectivity density), K (cutoff value). Due to the low cost of acquiring nearest-neighbor information and the strongly improved network capacity, our strategy may be useful and reasonable for the protocol designing of modern communication networks.Comment: 9 pages, 5 figure

    Orientations of LASCO Halo CMEs and Their Connection to the Flux Rope Structure of Interplanetary CMEs

    Full text link
    Coronal mass ejections (CMEs) observed near the Sun via LASCO coronographic imaging are the most important solar drivers of geomagnetic storms. ICMEs, their interplanetary, near-Earth counterparts, can be detected in-situ, for example, by the Wind and ACE spacecraft. An ICME usually exhibits a complex structure that very often includes a magnetic cloud (MC). They can be commonly modelled as magnetic flux ropes and there is observational evidence to expect that the orientation of a halo CME elongation corresponds to the orientation of the flux rope. In this study, we compare orientations of elongated CME halos and the corresponding MCs, measured by Wind and ACE spacecraft. We characterize the MC structures by using the Grad-Shafranov reconstruction technique and three MC fitting methods to obtain their axis directions. The CME tilt angles and MC fitted axis angles were compared without taking into account handedness of the underlying flux rope field and the polarity of its axial field. We report that for about 64% of CME-MC events, we found a good correspondence between the orientation angles implying that for the majority of interplanetary ejecta their orientations do not change significantly (less than 45 deg rotation) while travelling from the Sun to the near Earth environment

    How Many CMEs Have Flux Ropes? Deciphering the Signatures of Shocks, Flux Ropes, and Prominences in Coronagraph Observations of CMEs

    Full text link
    We intend to provide a comprehensive answer to the question on whether all Coronal Mass Ejections (CMEs) have flux rope structure. To achieve this, we present a synthesis of the LASCO CME observations over the last sixteen years, assisted by 3D MHD simulations of the breakout model, EUV and coronagraphic observations from STEREO and SDO, and statistics from a revised LASCO CME database. We argue that the bright loop often seen as the CME leading edge is the result of pileup at the boundary of the erupting flux rope irrespective of whether a cavity or, more generally, a 3-part CME can be identified. Based on our previous work on white light shock detection and supported by the MHD simulations, we identify a new type of morphology, the `two-front' morphology. It consists of a faint front followed by diffuse emission and the bright loop-like CME leading edge. We show that the faint front is caused by density compression at a wave (or possibly shock) front driven by the CME. We also present high-detailed multi-wavelength EUV observations that clarify the relative positioning of the prominence at the bottom of a coronal cavity with clear flux rope structure. Finally, we visually check the full LASCO CME database for flux rope structures. In the process, we classify the events into two clear flux rope classes (`3-part', `Loop'), jets and outflows (no clear structure). We find that at least 40% of the observed CMEs have clear flux rope structures. We propose a new definition for flux rope CMEs (FR-CMEs) as a coherent magnetic, twist-carrying coronal structure with angular width of at least 40 deg and able to reach beyond 10 Rsun which erupts on a time scale of a few minutes to several hours. We conclude that flux ropes are a common occurrence in CMEs and pose a challenge for future studies to identify CMEs that are clearly not FR-CMEs.Comment: 26 pages, 9 figs, to be published in Solar Physics Topical Issue "Flux Rope Structure of CMEs

    Fermat-linked relations for the Boubaker polynomial sequences via Riordan matrices analysis

    Get PDF
    The Boubaker polynomials are investigated in this paper. Using Riordan matrices analysis, a sequence of relations outlining the relations with Chebyshev and Fermat polynomials have been obtained. The obtained expressions are a meaningful supply to recent applied physics studies using the Boubaker polynomials expansion scheme (BPES).Comment: 12 pages, LaTe

    Modified f(G) gravity models with curvature-matter coupling

    Full text link
    A modified f(G) gravity model with coupling between matter and geometry is proposed, which is described by the product of the Lagrange density of the matter and an arbitrary function of the Gauss-Bonnet term. The field equations and the equations of motion corresponding to this model show the non-conservation of the energy-momentum tensor, the presence of an extra-force acting on test particles and the non-geodesic motion. Moreover, the energy conditions and the stability criterion at de Sitter point in the modified f(G) gravity models with curvature-matter coupling are derived, which can degenerate to the well-known energy conditions in general relativity. Furthermore, in order to get some insight on the meaning of these energy conditions, we apply them to the specific models of f(G) gravity and the corresponding constraints on the models are given. In addition, the conditions and the candidate for late-time cosmic accelerated expansion in the modified f(G) gravity are studied by means of conditions of power-law expansion and the equation of state of matter less than -1/ 3 .Comment: 13 pages, 4 figure
    • 

    corecore