869 research outputs found

    Graph-based Mumford-Shah segmentation of dynamic PET with application to input function estimation

    Full text link

    Pasture Studies with Laying Hens

    Get PDF

    Archaeologies of empire: an introduction

    Get PDF
    Archaeology of the Near Eas

    Classical, novel and atypical isoforms of PKC stimulate ANF- and TRE/AP-1-regulated-promoter activity in ventricular cardiomyocytes

    Get PDF
    Cultured neonatal rat ventricular myocytes were co-transfected with expression plasmids encoding protein kinase C (PKC) isoforms from each of the PKC subfamilies (classical PKC-α, novel PKC-Δ or atypical PKC-Ο) together with an atrial natriuretic factor (ANF) reporter plasmid. Each PKC had been rendered constitutively active by a single Ala→Glu mutation or a small deletion in the inhibitory pseudosubstrate site. cPKC-α, nPKC-Δ or aPKC-Ο expression plasmids each stimulated ANF-promoter activity and expression of a reporter gene under the control of a 12-O-tetradecanoylphorbol 13-acetate-response element (TRE). Upregulation of the ANF promoter is characteristic of the hypertrophic response in the heart ventricle and a TRE is present in the ANF promoter. Thus all subfamilies of PKC may have the potential to contribute to hypertrophic response in cardiomyocytes

    Exposure to bacterial signals does not alter pea aphids' survival upon a second challenge or investment in production of winged offspring

    Get PDF
    Pea aphids have an obligate nutritional symbiosis with the bacteria Buchneraaphidicola and frequently also harbor one or more facultative symbionts. Aphids are also susceptible to bacterial pathogen infections, and it has been suggested that aphids have a limited immune response towards such pathogen infections compared to other, more well-studied insects. However, aphids do possess at least some of the genes known to be involved in bacterial immune responses in other insects, and immune-competent hemocytes. One possibility is that immune priming with microbial elicitors could stimulate immune protection against subsequent bacterial infections, as has been observed in several other insect systems. To address this hypothesis we challenged aphids with bacterial immune elicitors twenty-four hours prior to live bacterial pathogen infections and then compared their survival rates to aphids that were not pre-exposed to bacterial signals. Using two aphid genotypes, we found no evidence for immune protection conferred by immune priming during infections with either Serratia marcescens or with Escherichia coli. Immune priming was not altered by the presence of facultative, beneficial symbionts in the aphids. In the absence of inducible immune protection, aphids may allocate energy towards other defense traits, including production of offspring with wings that could escape deteriorating conditions. To test this, we monitored the ratio of winged to unwinged offspring produced by adult mothers of a single clone that had been exposed to bacterial immune elicitors, to live E. coli infections or to no challenge. We found no correlation between immune challenge and winged offspring production, suggesting that this mechanism of defense, which functions upon exposure to fungal pathogens, is not central to aphid responses to bacterial infections.Toxicolog

    DCE-MRI biomarkers of tumour heterogeneity predict CRC liver metastasis shrinkage following bevacizumab and FOLFOX-6

    Get PDF
    Background: There is limited evidence that imaging biomarkers can predict subsequent response to therapy. Such prognostic and/or predictive biomarkers would facilitate development of personalised medicine. We hypothesised that pre-treatment measurement of the heterogeneity of tumour vascular enhancement could predict clinical outcome following combination anti-angiogenic and cytotoxic chemotherapy in colorectal cancer (CRC) liver metastases. Methods: Ten patients with 26 CRC liver metastases had two dynamic contrast-enhanced MRI (DCE-MRI) examinations before starting first-line bevacizumab and FOLFOX-6. Pre-treatment biomarkers of tumour microvasculature were computed and a regression analysis was performed against the post-treatment change in tumour volume after five cycles of therapy. The ability of the resulting linear model to predict tumour shrinkage was evaluated using leave-one-out validation. Robustness to inter-visit variation was investigated using data from a second baseline scan. Results: In all, 86% of the variance in post-treatment tumour shrinkage was explained by the median extravascular extracellular volume (ve), tumour enhancing fraction (EF), and microvascular uniformity (assessed with the fractal measure box dimension, d0) (R2=0.86, P<0.00005). Other variables, including baseline volume were not statistically significant. Median prediction error was 12%. Equivalent results were obtained from the second scan. Conclusion: Traditional image analyses may over-simplify tumour biology. Measuring microvascular heterogeneity may yield important prognostic and/or predictive biomarkers

    Comparison of s- and d-wave gap symmetry in nonequilibrium superconductivity

    Full text link
    Recent application of ultrafast pump/probe optical techniques to superconductors has renewed interest in nonequilibrium superconductivity and the predictions that would be available for novel superconductors, such as the high-Tc cuprates. We have reexamined two of the classical models which have been used in the past to interpret nonequilibrium experiments with some success: the mu* model of Owen and Scalapino and the T* model of Parker. Predictions depend on pairing symmetry. For instance, the gap suppression due to excess quasiparticle density n in the mu* model, varies as n^{3/2} in d-wave as opposed to n for s-wave. Finally, we consider these models in the context of S-I-N tunneling and optical excitation experiments. While we confirm that recent pump/probe experiments in YBCO, as presently interpreted, are in conflict with d-wave pairing, we refute the further claim that they agree with s-wave.Comment: 14 pages, 11 figure

    Surface and electronic structure of MOCVD-grown Ga(0.92)In(0.08)N investigated by UV and X-ray photoelectron spectroscopies

    Full text link
    The surface and electronic structure of MOCVD-grown layers of Ga(0.92)In(0.08)N have been investigated by means of photoemission. An additional feature at the valence band edge, which can be ascribed to the presence of In in the layer, has been revealed. A clean (0001)-(1x1) surface was prepared by argon ion sputtering and annealing. Stability of chemical composition of the investigated surface subjected to similar ion etching was proven by means of X-ray photoemission spectroscopy.Comment: 13 pages, 6 figure

    Evolution of active and polar photospheric magnetic fields during the rise of Cycle 24 compared to previous cycles

    Full text link
    The evolution of the photospheric magnetic field during the declining phase and minimum of Cycle 23 and the recent rise of Cycle 24 are compared with the behavior during previous cycles. We used longitudinal full-disk magnetograms from the NSO's three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun (SOLIS) Vector Spectro-Magnetograph (VSM), the Spectromagnetograph and the 512-Channel Magnetograph instruments, and longitudinal full-disk magnetograms from the Mt. Wilson 150-foot tower. We analyzed 37 years of observations from these two observatories that have been observing daily, weather permitting, since 1974, offering an opportunity to study the evolving relationship between the active region and polar fields in some detail over several solar cycles. It is found that the annual averages of a proxy for the active region poloidal magnetic field strength, the magnetic field strength of the high-latitude poleward streams, and the time derivative of the polar field strength are all well correlated in each hemisphere. These results are based on statistically significant cyclical patterns in the active region fields and are consistent with the Babcock-Leighton phenomenological model for the solar activity cycle. There was more hemispheric asymmetry in the activity level, as measured by total and maximum active region flux, during late Cycle 23 (after around 2004), when the southern hemisphere was more active, and Cycle 24 up to the present, when the northern hemisphere has been more active, than at any other time since 1974. The active region net proxy poloidal fields effectively disappeared in both hemispheres around 2004, and the polar fields did not become significantly stronger after this time. We see evidence that the process of Cycle 24 field reversal has begun at both poles.Comment: Accepted for publication in Solar Physic
    • 

    corecore