235 research outputs found

    Domain Walls Motion and Resistivity in a Fully-Frustrated Josephson Array

    Full text link
    It is identified numerically that the resistivity of a fully-frustrated Josephson-junction array is due to motion of domain walls in vortex lattice rather than to motion of single vortices

    Characterization of an endogenous gene expressed in Aedes aegypti using an orally infectious recombinant Sindbis virus

    Get PDF
    Sindbis virus expression vectors have been used successfully to express and silence genes of interest in vivo in several mosquito species, including Aedes aegypti, Ae. albopictus, Ae. triseriatus,Culex pipiens, Armigeres subalbatus and Anopheles gambiae. Here we describe the expression of an endogenous gene, defensin, in Ae. aegypti using the orally infectious Sindbis virus, MRE/3′2J expression vector. We optimized conditions to infect mosquito larvae per os using C6/36 Ae. albopictus cells infected with the recombinant virus to maximize virus infection and expression of defensin. Infection with the parental Sindbis virus (MRE/3′2J) did not induce defensin expression. Mosquito larvae infected by ingestion of recombinant Sindbis virus-infected C6/36 cells expressed defensin when they emerged as adults. Defensin expression was observed by western analysis or indirect fluorescent assay in all developmental stages of mosquitoes infected with MRE/3′2J virus that contained the defensin insert. The multiplicity of infection of C6/36 cells and the quantity of infected cells consumed by larvae played an important role in defensin expression. Parental viruses, missing the defensin insert, and/or other defective interfering virus may have contributed to these observations

    Evaluation of human chorionic gonadotropin as a replacement for GnRH in an ovulation synchronization protocol before fixed-time insemination

    Get PDF
    Two experiments were conducted to evaluate the difference between gonadotropinreleasing hormone (GnRH) and human chorionic gonadotropin (hCG) given at the beginning of a timed AI protocol and their effects on fertility. In Experiment 1, beef cows (n = 672) at six different locations were assigned randomly to treatments based on age, body condition, and days postpartum. On day −10, cattle were treated with GnRH or hCG and a progesterone-releasing controlled internal drug release (CIDR) insert was placed in the vagina. An injection of PGF2α was given and CIDR inserts were removed on day −3. Cows were inseminated at one fixed timed at 62 hr (day 0) after CIDR insert removal. Pregnancy was diagnosed at 33 days (range of 32 to 35) after insemination to determine pregnancy rates. For cows that were pregnant after the first insemination, a second pregnancy diagnosis was conducted 35 days (range of 33 to 37) after the first diagnosis to determine pregnancy survival. Pregnancy rates were reduced by the hCG injection compared with the GnRH injection (39.1 vs. 53.5%). In Experiment 2, cattle were assigned randomly to three treatments, balanced evenly across the two treatments (GnRH vs. hCG) applied in Experiment 1. Cows were injected with GnRH, hCG, or saline seven days before the first pregnancy diagnosis of cows inseminated in Experiment 1. At the time of pregnancy diagnosis, cattle found not pregnant (n = 328) were given PGF2α and inseminated 56 hours later. A second pregnancy diagnosis was conducted 35 days (range of 33 to 37) after the second insemination to determine pregnancy rate at the second AI. Injections of GnRH, hCG, or saline had no effect on pregnancy rates of cows already pregnant to the first insemination. Pregnancy rates after second insemination in cows given an injection of hCG or GnRH, however, tended to be reduced. Percentage of cows pregnant after two timed inseminations exceeded 60% without any need to detect estrus

    Numerical studies of the two- and three-dimensional gauge glass at low temperature

    Full text link
    We present results from Monte Carlo simulations of the two- and three-dimensional gauge glass at low temperature using the parallel tempering Monte Carlo method. Our results in two dimensions strongly support the transition being at T_c=0. A finite-size scaling analysis, which works well only for the larger sizes and lower temperatures, gives the stiffness exponent theta = -0.39 +/- 0.03. In three dimensions we find theta = 0.27 +/- 0.01, compatible with recent results from domain wall renormalization group studies.Comment: 7 pages, 10 figures, submitted to PR

    Zero Temperature Glass Transition in the Two-Dimensional Gauge Glass Model

    Full text link
    We investigate dynamic scaling properties of the two-dimensional gauge glass model for the vortex glass phase in superconductors with quenched disorder. From extensive Monte Carlo simulations we obtain static and dynamic finite size scaling behavior, where the static simulations use a temperature exchange method to ensure convergence at low temperatures. Both static and dynamic scaling of Monte Carlo data is consistent with a glass transition at zero temperature. We study a dynamic correlation function for the superconducting order parameter, as well as the phase slip resistance. From the scaling of these two functions, we find evidence for two distinct diverging correlation times at the zero temperature glass transition. The longer of these time scales is associated with phase slip fluctuations across the system that lead to finite resistance at any finite temperature, while the shorter time scale is associated with local phase fluctuations.Comment: 8 pages, 10 figures; v2: some minor correction

    On the existence of a finite-temperature transition in the two-dimensional gauge glass

    Full text link
    Results from Monte Carlo simulations of the two-dimensional gauge glass supporting a zero-temperature transition are presented. A finite-size scaling analysis of the correlation length shows that the system does not exhibit spin-glass order at finite temperatures. These results are compared to earlier claims of a finite-temperature transition.Comment: 4 pages, 2 figure

    Transverse phase-locking in fully frustrated Josephson junction arrays: a new type of fractional giant steps

    Full text link
    We study, analytically and numerically, phase locking of driven vortex lattices in fully-frustrated Josephson junction arrays at zero temperature. We consider the case when an ac current is applied {\it perpendicular} to a dc current. We observe phase locking, steps in the current-voltage characteristics, with a dependence on external ac-drive amplitude and frequency qualitatively different from the Shapiro steps, observed when the ac and dc currents are applied in parallel. Further, the critical current increases with increasing transverse ac-drive amplitude, while it decreases for longitudinal ac-drive. The critical current and the phase-locked current step width, increase quadratically with (small) amplitudes of the ac-drive. For larger amplitudes of the transverse ac-signal, we find windows where the critical current is hysteretic, and windows where phase locking is suppressed due to dynamical instabilities. We characterize the dynamical states around the phase-locking interference condition in the IVIV curve with voltage noise, Lyapunov exponents and Poincar\'e sections. We find that zero temperature phase-locking behavior in large fully frustrated arrays is well described by an effective four plaquette model.Comment: 12 pages, 11 figure

    Quantum Interference in Superconducting Wire Networks and Josephson Junction Arrays: Analytical Approach based on Multiple-Loop Aharonov-Bohm Feynman Path-Integrals

    Get PDF
    We investigate analytically and numerically the mean-field superconducting-normal phase boundaries of two-dimensional superconducting wire networks and Josephson junction arrays immersed in a transverse magnetic field. The geometries we consider include square, honeycomb, triangular, and kagome' lattices. Our approach is based on an analytical study of multiple-loop Aharonov-Bohm effects: the quantum interference between different electron closed paths where each one of them encloses a net magnetic flux. Specifically, we compute exactly the sums of magnetic phase factors, i.e., the lattice path integrals, on all closed lattice paths of different lengths. A very large number, e.g., up to 108110^{81} for the square lattice, exact lattice path integrals are obtained. Analytic results of these lattice path integrals then enable us to obtain the resistive transition temperature as a continuous function of the field. In particular, we can analyze measurable effects on the superconducting transition temperature, Tc(B)T_c(B), as a function of the magnetic filed BB, originating from electron trajectories over loops of various lengths. In addition to systematically deriving previously observed features, and understanding the physical origin of the dips in Tc(B)T_c(B) as a result of multiple-loop quantum interference effects, we also find novel results. In particular, we explicitly derive the self-similarity in the phase diagram of square networks. Our approach allows us to analyze the complex structure present in the phase boundaries from the viewpoint of quantum interference effects due to the electron motion on the underlying lattices.Comment: 18 PRB-type pages, plus 8 large figure

    Spin-Charge Separation in the tJt-J Model: Magnetic and Transport Anomalies

    Full text link
    A real spin-charge separation scheme is found based on a saddle-point state of the tJt-J model. In the one-dimensional (1D) case, such a saddle-point reproduces the correct asymptotic correlations at the strong-coupling fixed-point of the model. In the two-dimensional (2D) case, the transverse gauge field confining spinon and holon is shown to be gapped at {\em finite doping} so that a spin-charge deconfinement is obtained for its first time in 2D. The gap in the gauge fluctuation disappears at half-filling limit, where a long-range antiferromagnetic order is recovered at zero temperature and spinons become confined. The most interesting features of spin dynamics and transport are exhibited at finite doping where exotic {\em residual} couplings between spin and charge degrees of freedom lead to systematic anomalies with regard to a Fermi-liquid system. In spin dynamics, a commensurate antiferromagnetic fluctuation with a small, doping-dependent energy scale is found, which is characterized in momentum space by a Gaussian peak at (π/a\pi/a, π/a \pi/a) with a doping-dependent width (δ\propto \sqrt{\delta}, δ\delta is the doping concentration). This commensurate magnetic fluctuation contributes a non-Korringa behavior for the NMR spin-lattice relaxation rate. There also exits a characteristic temperature scale below which a pseudogap behavior appears in the spin dynamics. Furthermore, an incommensurate magnetic fluctuation is also obtained at a {\em finite} energy regime. In transport, a strong short-range phase interference leads to an effective holon Lagrangian which can give rise to a series of interesting phenomena including linear-TT resistivity and T2T^2 Hall-angle. We discuss the striking similarities of these theoretical features with those found in the high-TcT_c cuprates and give aComment: 70 pages, RevTex, hard copies of 7 figures available upon request; minor revisions in the text and references have been made; To be published in July 1 issue of Phys. Rev. B52, (1995
    corecore