48 research outputs found
Physically meaningful uncertainty quantification in probabilistic wind turbine power curve models as a damage-sensitive feature
A wind turbines’ power curve is an easily accessible form of damage-sensitive data, and as such is a key part of structural health monitoring (SHM) in wind turbines. Power curve models can be constructed in a number of ways, but the authors argue that probabilistic methods carry inherent benefits in this use case, such as uncertainty quantification and allowing uncertainty propagation analysis. Many probabilistic power curve models have a key limitation in that they are not physically meaningful – they return mean and uncertainty predictions outside of what is physically possible (the maximum and minimum power outputs of the wind turbine). This paper investigates the use of two bounded Gaussian processes (GPs) in order to produce physically meaningful probabilistic power curve models. The first model investigated was a warped heteroscedastic Gaussian process, and was found to be ineffective due to specific shortcomings of the GP in relation to the warping function. The second model – an approximated GP with a Beta likelihood was highly successful and demonstrated that a working bounded probabilistic model results in better predictive uncertainty than a corresponding unbounded one without meaningful loss in predictive accuracy. Such a bounded model thus offers increased accuracy for performance monitoring and increased operator confidence in the model due to guaranteed physical plausibility
Quantitative Treatment of Decoherence
We outline different approaches to define and quantify decoherence. We argue
that a measure based on a properly defined norm of deviation of the density
matrix is appropriate for quantifying decoherence in quantum registers. For a
semiconductor double quantum dot qubit, evaluation of this measure is reviewed.
For a general class of decoherence processes, including those occurring in
semiconductor qubits, we argue that this measure is additive: It scales
linearly with the number of qubits.Comment: Revised version, 26 pages, in LaTeX, 3 EPS figure
Scale-free static and dynamical correlations in melts of monodisperse and Flory-distributed homopolymers: A review of recent bond-fluctuation model studies
It has been assumed until very recently that all long-range correlations are
screened in three-dimensional melts of linear homopolymers on distances beyond
the correlation length characterizing the decay of the density
fluctuations. Summarizing simulation results obtained by means of a variant of
the bond-fluctuation model with finite monomer excluded volume interactions and
topology violating local and global Monte Carlo moves, we show that due to an
interplay of the chain connectivity and the incompressibility constraint, both
static and dynamical correlations arise on distances . These
correlations are scale-free and, surprisingly, do not depend explicitly on the
compressibility of the solution. Both monodisperse and (essentially)
Flory-distributed equilibrium polymers are considered.Comment: 60 pages, 49 figure
Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy
We review HB stars in a broad astrophysical context, including both variable
and non-variable stars. A reassessment of the Oosterhoff dichotomy is
presented, which provides unprecedented detail regarding its origin and
systematics. We show that the Oosterhoff dichotomy and the distribution of
globular clusters (GCs) in the HB morphology-metallicity plane both exclude,
with high statistical significance, the possibility that the Galactic halo may
have formed from the accretion of dwarf galaxies resembling present-day Milky
Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the
second-parameter problem is presented. A technique is proposed to estimate the
HB types of extragalactic GCs on the basis of integrated far-UV photometry. The
relationship between the absolute V magnitude of the HB at the RR Lyrae level
and metallicity, as obtained on the basis of trigonometric parallax
measurements for the star RR Lyrae, is also revisited, giving a distance
modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are
studied. Finally, the conductive opacities used in evolutionary calculations of
low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and
Space Scienc
Overexpression of the steroidogenic acute regulatory protein increases the expression of ATP-binding cassette transporters in microvascular endothelial cells (bEnd.3)*
Objective: To determine the effect of steroidogenic acute regulatory protein (StAR) overexpression on the levels of adenosine triphosphate (ATP)-binding cassette transporter A1 (ABCA1) and ATP-binding cassette transporter G1 (ABCG1) in an endothelial cell line (bEnd.3). Methods: The StAR gene was induced in bEnd.3 cells with adenovirus infection. The infection efficiency was detected by fluorescence activated cell sorter (FACS) and fluorescence microscopy. The expressions of StAR gene and protein levels were detected by real-time polymerase chain reaction (PCR) and Western blot. The gene and protein levels of ABCA1 and ABCG1 were detected by real-time PCR and Western blot after StAR overexpression. Results: The result shows that StAR was successfully overexpressed in bEnd.3 cells by adenovirus infection. The mRNA and protein expressions of ABCA1 and ABCG1 were greatly increased by StAR overexpression in bEnd.3 cells. Conclusion: Overexpression of StAR increases ABCA1 and ABCG1 expressions in endothelial cells