73 research outputs found

    Regulation of 5-HT Receptors and the Hypothalamic-Pituitary-Adrenal Axis

    Full text link
    Disturbances in the serotonin (5-HT) system is the neurobiological abnormality most consistently associated with suicide. Hyperactivity of the hypothalmic-pituitary-adrenal (HPA) axis is also described in suicide victims. The HPA axis is the classical neuroendocrine system that responds to stress and whose final product, corticosteroids, targets components of the limbic system, particularly the hippocampus. We will review resulsts from animal studies that point to the possibility that many of the 5-HT receptor changes observed in suicide brains may be a result of, or may be worsened by, the HPA overactivity that may be present in some suicide victims. The results of these studies can be summarized as follows: (1) chronic unpredictable stress produces high corticosteroid levels in rats; (2) chronic stress also results in changes in specific 5-HT receptors (increases in cortical 5-HT2A and decreases in hipocampal 5-HT1A and 5-HT1B); (3) chronic antidepressant administration prevents many of the 5-HT receptor changes observed after stress; and (4) chronic antidepressant administration reverses the overactivity of the HPA axis. If indeed 5-HT receptors have a partial role in controlling affective states, then their modulation by corticosteroids provides a potential mechanism by which these hormones may regulate mood. These data may also provide a biological understanding of how stressful events may increase the risk for suicide in vulnerable individuals and may help us elucidate the neurobiological underpinnings of treatment resistance.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73437/1/j.1749-6632.1997.tb52357.x.pd

    Whole genome analysis of a schistosomiasis-transmitting freshwater snail

    Get PDF
    Biomphalaria snails are instrumental in transmission of the human blood fluke Schistosoma mansoni. With the World Health Organization's goal to eliminate schistosomiasis as a global health problem by 2025, there is now renewed emphasis on snail control. Here, we characterize the genome of Biomphalaria glabrata, a lophotrochozoan protostome, and provide timely and important information on snail biology. We describe aspects of phero-perception, stress responses, immune function and regulation of gene expression that support the persistence of B. glabrata in the field and may define this species as a suitable snail host for S. mansoni. We identify several potential targets for developing novel control measures aimed at reducing snail-mediated transmission of schistosomiasis

    SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination

    Get PDF
    BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript

    Performance of interior-type permanent-magnet alternator

    No full text
    corecore