22 research outputs found

    The Radial Bias: A Different Slant on Visual Orientation Sensitivity in Human and Nonhuman Primates

    Get PDF
    SummaryIt is generally assumed that sensitivity to different stimulus orientations is mapped in a globally equivalent fashion across primate visual cortex, at a spatial scale larger than that of orientation columns. However, some evidence predicts instead that radial orientations should produce higher activity than other orientations, throughout visual cortex. Here, this radial orientation bias was robustly confirmed using (1) human psychophysics, plus fMRI in (2) humans and (3) behaving monkeys. In visual cortex, fMRI activity was at least 20% higher in the retinotopic representations of polar angle which corresponded to the radial stimulus orientations (relative to tangential). In a global demonstration of this, we activated complementary retinotopic quadrants of visual cortex by simply changing stimulus orientation, without changing stimulus location in the visual field. This evidence reveals a neural link between orientation sensitivity and the cortical retinotopy, which have previously been considered independent

    The Retinotopy of Visual Spatial Attention

    Get PDF
    AbstractWe used high-field (3T) functional magnetic resonance imaging (fMRI) to label cortical activity due to visual spatial attention, relative to flattened cortical maps of the retinotopy and visual areas from the same human subjects. In the main task, the visual stimulus remained constant, but covert visual spatial attention was varied in both location and load. In each of the extrastriate retinotopic areas, we found MR increases at the representations of the attended target. Similar but smaller increases were found in V1. Decreased MR levels were found in the same cortical locations when attention was directed at retinotopically different locations. In and surrounding area MT+, MR increases were lateralized but not otherwise retinotopic. At the representation of eccentricities central to that of the attended targets, prominent MR decreases occurred during spatial attention

    Cortical Mechanisms Specific to Explicit Visual Object Recognition

    Get PDF
    AbstractThe cortical mechanisms associated with conscious object recognition were studied using functional magnetic resonance imaging (fMRI). Participants were required to recognize pictures of masked objects that were presented very briefly, randomly and repeatedly. This design yielded a gradual accomplishment of successful recognition. Cortical activity in a ventrotemporal visual region was linearly correlated with perception of object identity. Therefore, although object recognition is rapid, awareness of an object's identity is not a discrete phenomenon but rather associated with gradually increasing cortical activity. Furthermore, the focus of the activity in the temporal cortex shifted anteriorly as subjects reported an increased knowledge regarding identity. The results presented here provide new insights into the processes underlying explicit object recognition, as well as the analysis that takes place immediately before and after recognition is possible

    Search for Color 'Center(s)' in Macaque Visual Cortex

    No full text

    Abnormalities in personal space and parietal–frontal function in schizophrenia

    Get PDF
    Schizophrenia is associated with subtle abnormalities in day-to-day social behaviors, including a tendency in some patients to “keep their distance” from others in physical space. The neural basis of this abnormality, and related changes in social functioning, is unknown. Here we examined, in schizophrenic patients and healthy control subjects, the functioning of a parietal–frontal network involved in monitoring the space immediately surrounding the body (“personal space”). Using fMRI, we found that one region of this network, the dorsal intraparietal sulcus (DIPS), was hyper-responsive in schizophrenic patients to face stimuli appearing to move towards the subjects, intruding into personal space. This hyper-responsivity was predicted both by the size of personal space (which was abnormally elevated in the schizophrenia group) and the severity of negative symptoms. In contrast, in a second study, the activity of two lower-level visual areas that send information to DIPS (the fusiform face area and middle temporal area) was normal in schizophrenia. Together, these findings suggest that changes in parietal–frontal networks that support the sensory-guided initiation of behavior, including actions occurring in the space surrounding the body, contribute to social dysfunction and negative symptoms in schizophrenia
    corecore