35 research outputs found

    Refined asymptotics for the infinite heat equation with homogeneous Dirichlet boundary conditions

    Get PDF
    The nonnegative viscosity solutions to the infinite heat equation with homogeneous Dirichlet boundary conditions are shown to converge as time increases to infinity to a uniquely determined limit after a suitable time rescaling. The proof relies on the half-relaxed limits technique as well as interior positivity estimates and boundary estimates. The expansion of the support is also studied

    The mixed problem in L^p for some two-dimensional Lipschitz domains

    Get PDF
    We consider the mixed problem for the Laplace operator in a class of Lipschitz graph domains in two dimensions with Lipschitz constant at most 1. The boundary of the domain is decomposed into two disjoint sets D and N. We suppose the Dirichlet data, f_D has one derivative in L^p(D) of the boundary and the Neumann data is in L^p(N). We find conditions on the domain and the sets D and N so that there is a p_0>1 so that for p in the interval (1,p_0), we may find a unique solution to the mixed problem and the gradient of the solution lies in L^p

    On thin plate spline interpolation

    Full text link
    We present a simple, PDE-based proof of the result [M. Johnson, 2001] that the error estimates of [J. Duchon, 1978] for thin plate spline interpolation can be improved by h1/2h^{1/2}. We illustrate that H{\mathcal H}-matrix techniques can successfully be employed to solve very large thin plate spline interpolation problem

    Positive solutions of Schr\"odinger equations and fine regularity of boundary points

    Full text link
    Given a Lipschitz domain Ω\Omega in RN{\mathbb R} ^N and a nonnegative potential VV in Ω\Omega such that V(x) d(x,∂Ω)2V(x)\, d(x,\partial \Omega)^2 is bounded in Ω\Omega we study the fine regularity of boundary points with respect to the Schr\"odinger operator LV:=Δ−VL_V:= \Delta -V in Ω\Omega . Using potential theoretic methods, several conditions equivalent to the fine regularity of z∈∂Ωz \in \partial \Omega are established. The main result is a simple (explicit if Ω\Omega is smooth) necessary and sufficient condition involving the size of VV for zz to be finely regular. An essential intermediate result consists in a majorization of ∫A∣ud(.,∂Ω)∣2 dx\int_A | {\frac {u} {d(.,\partial \Omega)}} | ^2\, dx for uu positive harmonic in Ω\Omega and A⊂ΩA \subset \Omega . Conditions for almost everywhere regularity in a subset AA of ∂Ω \partial \Omega are also given as well as an extension of the main results to a notion of fine L1∣L0{\mathcal L}_1 | {\mathcal L}_0-regularity, if Lj=L−Vj{\mathcal L}_j={\mathcal L}-V_j, V0, V1V_0,\, V_1 being two potentials, with V0≀V1V_0 \leq V_1 and L{\mathcal L} a second order elliptic operator.Comment: version 1. 23 pages version 3. 28 pages. Mainly a typo in Theorem 1.1 is correcte

    Maximal L p -regularity for the Laplacian on Lipschitz domains

    Get PDF
    We consider the Laplacian with Dirichlet or Neumann boundary conditions on bounded Lipschitz domains ?, both with the following two domains of definition:D1(?) = {u ? W1,p(?) : ?u ? Lp(?), Bu = 0}, orD2(?) = {u ? W2,p(?) : Bu = 0}, where B is the boundary operator.We prove that, under certain restrictions on the range of p, these operators generate positive analytic contraction semigroups on Lp(?) which implies maximal regularity for the corresponding Cauchy problems. In particular, if ? is bounded and convex and 1 < p ? 2, the Laplacian with domain D2(?) has the maximal regularity property, as in the case of smooth domains. In the last part,we construct an example that proves that, in general, the Dirichlet–Laplacian with domain D1(?) is not even a closed operator

    Bethe-Sommerfeld conjecture for periodic operators with strong perturbations

    Full text link
    We consider a periodic self-adjoint pseudo-differential operator H=(−Δ)m+BH=(-\Delta)^m+B, m>0m>0, in Rd\R^d which satisfies the following conditions: (i) the symbol of BB is smooth in \bx, and (ii) the perturbation BB has order less than 2m2m. Under these assumptions, we prove that the spectrum of HH contains a half-line. This, in particular implies the Bethe-Sommerfeld Conjecture for the Schr\"odinger operator with a periodic magnetic potential in all dimensions.Comment: 61 page

    A limit model for thermoelectric equations

    Full text link
    We analyze the asymptotic behavior corresponding to the arbitrary high conductivity of the heat in the thermoelectric devices. This work deals with a steady-state multidimensional thermistor problem, considering the Joule effect and both spatial and temperature dependent transport coefficients under some real boundary conditions in accordance with the Seebeck-Peltier-Thomson cross-effects. Our first purpose is that the existence of a weak solution holds true under minimal assumptions on the data, as in particular nonsmooth domains. Two existence results are studied under different assumptions on the electrical conductivity. Their proofs are based on a fixed point argument, compactness methods, and existence and regularity theory for elliptic scalar equations. The second purpose is to show the existence of a limit model illustrating the asymptotic situation.Comment: 20 page

    The transmission problem on a three-dimensional wedge

    Get PDF
    We consider the transmission problem for the Laplace equation on an infinite three-dimensional wedge, determining the complex parameters for which the problem is well-posed, and characterizing the infinite multiplicity nature of the spectrum. This is carried out in two formulations leading to rather different spectral pictures. One formulation is in terms of square integrable boundary data, the other is in terms of finite energy solutions. We use the layer potential method, which requires the harmonic analysis of a non-commutative non-unimodular group associated with the wedge
    corecore