25 research outputs found

    Psychosocial Treatment of Children in Foster Care: A Review

    Get PDF
    A substantial number of children in foster care exhibit psychiatric difficulties. Recent epidemiologi-cal and historical trends in foster care, clinical findings about the adjustment of children in foster care, and adult outcomes are reviewed, followed by a description of current approaches to treatment and extant empirical support. Available interventions for these children can be categorized as either symptom-focused or systemic, with empirical support for specific methods ranging from scant to substantial. Even with treatment, behavioral and emotional problems often persist into adulthood, resulting in poor functional outcomes. We suggest that self-regulation may be an important mediat-ing factor in the appearance of emotional and behavioral disturbance in these children

    Do Femtonewton Forces Affect Genetic Function? A Review

    Full text link
    Protein-Mediated DNA looping is intricately related to gene expression. Therefore any mechanical constraint that disrupts loop formation can play a significant role in gene regulation. Polymer physics models predict that less than a piconewton of force may be sufficient to prevent the formation of DNA loops. Thus, it appears that tension can act as a molecular switch that controls the much larger forces associated with the processive motion of RNA polymerase. Since RNAP can exert forces over 20 pN before it stalls, a ‘substrate tension switch’ could offer a force advantage of two orders of magnitude. Evidence for such a mechanism is seen in recent in vitro micromanipulation experiments. In this article we provide new perspective on existing theory and experimental data on DNA looping in vitro and in vivo . We elaborate on the connection between tension and a variety of other intracellular mechanical constraints including sequence specific curvature and supercoiling. In the process, we emphasize that the richness and versatility of DNA mechanics opens up a whole new paradigm of gene regulation to explore.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41816/1/10867_2005_Article_9002.pd

    Psychosocial Treatment of Children in Foster Care: A Review

    Full text link

    Biofuels, greenhouse gases and climate change. A review

    Full text link

    The Physics of the B Factories

    Get PDF

    Crosslinking of Epoxy-Modified Phenol Novolac (EPN) Powder Coatings: Particle Size and Adhesion

    No full text
    These studies were undertaken to examine holy particle size of epoxy phenol novolac (EPN) powder coatings may affect adhesion to metal substrates. Particle sizes of 21 and 83 mu m diameter were utilized. DSC analysis shows that the activation energies of crosslinking for the 21 mu m particle size is 41 kJ/mol and 58 kJ/mol for 83 mu m particle size which is attributed to the effect of particle size, and time-temperature-particle size (TTPS) parameters are used to describe powder-liquid-solid from transformation process. Although, the TTSP term represents a combination of intrinsic and extrinsic properties. We believe that this is the TTPS term that adequately describes the processes in which, in order for crosslinking reactions to occur, particles must initiate the flow. Quantitative attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopic analysis was used to follow crosslinking processes by monitoring the decrease of oxirane concentration, and showed that for thermal cure at 185 degrees C for 20 min, the oxirane concentration decreases at a similar rate for 21 mu m and 83 mu m particle sizes. The results of pull-off adhesion measurements from an Al substuate show that when the 21 mu m particle size is crosslinked for 10 min at 110, 140, and 170 degrees C, adhesion is consistently higher than for the same coating system at 83 mu m particle size. This difference is attributed to the finite time required for powder particles to reach a proper melt viscosity, followed by reactions of functional groups leading to crosslinking. Extended cure times to 120 min for the 83 mu m particle resulted in adhesion similar to the 21 mu m particle size
    corecore