203 research outputs found

    A (Running) Bolt for New Reasons

    Full text link
    We construct a four-parameter family of smooth, horizonless, stationary solutions of ungauged five-dimensional supergravity by using the four-dimensional Euclidean Schwarzschild metric as a base space and "magnetizing" its bolt. We then generalize this to a five-parameter family based upon the Euclidean Kerr-Taub-Bolt. These "running Bolt" solutions are necessarily non-static. They also have the same charges and mass as a non-extremal black hole with a classically-large horizon area. Moreover, in a certain regime their mass can decrease as their charges increase. The existence of these solutions supports the idea that the singularities of non-extremal black holes are resolved by low-mass modes that correct the singularity of the classical black hole solution on large (horizon-sized) scales.Comment: 25 pages, 3 figures, LaTeX; v2: minor changes, references adde

    Hawking Radiation as Quantum Tunneling in Rindler Coordinate

    Full text link
    We substantiate the Hawking radiation as quantum tunneling of fields or particles crossing the horizon by using the Rindler coordinate. The thermal spectrum detected by an accelerated particle is interpreted as quantum tunneling in the Rindler spacetime. Representing the spacetime near the horizon locally as a Rindler spacetime, we find the emission rate by tunneling, which is expressed as a contour integral and gives the correct Boltzmann factor. We apply the method to non-extremal black holes such as a Schwarzschild black hole, a non-extremal Reissner-Nordstr\"{o}m black hole, a charged Kerr black hole, de Sitter space, and a Schwarzschild-anti de Sitter black hole.Comment: LaTex 19 pages, no figure; references added and replaced by the version accepted in JHE

    Spring-block model for a single-lane highway traffic

    Full text link
    A simple one-dimensional spring-block chain with asymmetric interactions is considered to model an idealized single-lane highway traffic. The main elements of the system are blocks (modeling cars), springs with unidirectional interactions (modeling distance keeping interactions between neighbors), static and kinetic friction (modeling inertia of drivers and cars) and spatiotemporal disorder in the values of these friction forces (modeling differences in the driving attitudes). The traveling chain of cars correspond to the dragged spring-block system. Our statistical analysis for the spring-block chain predicts a non-trivial and rich complex behavior. As a function of the disorder level in the system a dynamic phase-transition is observed. For low disorder levels uncorrelated slidings of blocks are revealed while for high disorder levels correlated avalanches dominates.Comment: 6 pages, 7 figure

    Brownian motion in AdS/CFT

    Full text link
    We study Brownian motion and the associated Langevin equation in AdS/CFT. The Brownian particle is realized in the bulk spacetime as a probe fundamental string in an asymptotically AdS black hole background, stretching between the AdS boundary and the horizon. The modes on the string are excited by the thermal black hole environment and consequently the string endpoint at the boundary undergoes an erratic motion, which is identified with an external quark in the boundary CFT exhibiting Brownian motion. Semiclassically, the modes on the string are thermally excited due to Hawking radiation, which translates into the random force appearing in the boundary Langevin equation, while the friction in the Langevin equation corresponds to the excitation on the string being absorbed by the black hole. We give a bulk proof of the fluctuation-dissipation theorem relating the random force and friction. This work can be regarded as a step toward understanding the quantum microphysics underlying the fluid-gravity correspondence. We also initiate a study of the properties of the effective membrane or stretched horizon picture of black holes using our bulk description of Brownian motion.Comment: 54 pages (38 pages + 5 appendices), 5 figures. v2: references added, clarifications in 6.2. v3: clarifications, version submitted to JHE

    Towards a holographic realization of the quarkyonic phase

    Get PDF
    Large-Nc QCD matter at intermediate baryon density and low temperatures has been conjectured to be in the so-called quarkyonic phase, i.e., to have a quark Fermi surface and on top of it a confined spectrum of excitations. It has been suggested that the presence of the quark Fermi surface leads to a homogeneous phase with restored chiral symmetry, which is unstable towards creating condensates that break both the chiral and translational symmetry. Motivated by these exotic features, we investigate properties of cold baryonic matter in the single-flavor Sakai-Sugimoto model, searching for a holographic realization of the quarkyonic phase. We use a simplified mean-field description and focus on the regime of parametrically large baryon densities, of the order of the square of the ’t Hooft coupling, as they turn out to lead to new physical effects similar to the ones occurring in the quarkyonic phase. One effect—the appearance of a particular marginally stable mode breaking translational invariance and linked with the presence of the Chern-Simons term in the flavor-brane Lagrangian—is known to occur in the deconfined phase of the Sakai-Sugimoto model, but turns out to be absent here. The other, completely new phenomenon that we, preliminarily, study using strong simplifying assumptions are density-enhanced interactions of the flavor-brane gauge field with holographically represented baryons. These seem to significantly affect the spectrum of vector and axial mesons and might lead to approximate chiral symmetry restoration in the lowest part of the spectrum, where the mesons start to qualitatively behave like collective excitations of the dense baryonic medium. We discuss the relevance of these effects for holographic searches of the quarkyonic phase and conclude with a discussion of various subtleties involved in constructing a mean-field holographic description of a dense baryonic medium

    Membrane paradigm realized?

    Full text link
    Are there any degrees of freedom on the black hole horizon? Using the `membrane paradigm' we can reproduce coarse-grained physics outside the hole by assuming a fictitious membrane just outside the horizon. But to solve the information puzzle we need `real' degrees of freedom at the horizon, which can modify Hawking's evolution of quantum modes. We argue that recent results on gravitational microstates imply a set of real degrees of freedom just outside the horizon; the state of the hole is a linear combination of rapidly oscillating gravitational solutions with support concentrated just outside the horizon radius. The collective behavior of these microstate solutions may give a realization of the membrane paradigm, with the fictitious membrane now replaced by real, explicit degrees of freedom.Comment: 8 pages, Latex, 3 figures (Essay given second place in Gravity Research Foundation essay competition 2010

    Moulting black holes

    Get PDF

    PEMBUATAN PROTOTIPE OTOMATISASI PENGOLAHAN DATA KAFE DAN KARAOKE BERBASIS MIKROKONTROLER AVR

    Get PDF
    Karaoke and café are places which often be visited by customer. This places are very busy and potentially robbing can be happenned. To manage karaoke and café easier it is neededautomation, so it can work effective and efficient. The objective of this final project report isto make a managing automation prototype of Karaoke and café data based on AVR microcontroller. A managing automation prototype of Karaoke and café data based on AVR microcontroller has been made. Generally detection of managing automation prototype of Karaoke and café data based on AVR microcontroller has designed use 16/32 Atmega, LCD, 4x4 keypad, DC motor, L293D IC, and push button. For ordering prototype, microcontroller receives input from keypad, than the result of microcontroller process will show by LCD output and seven segments. For automatic order serving, microcontroller receives input from push button, than microcontroller output becomes L293D IC input. The L293D IC outputs control DC motor. At door security, microcontroller processeson LCD output and IC L293D, IC L293D control DC motor. At billing karaoke, microcontroller receives input from the push button, and outputwill be displayed as seven segments. This prototype makes managing karaoke and cafe easier, save the time and energy. It can be concluded that m anaging automation prototype of karaoke and café data based on AVR microcontroller can be used as real managing automation prototype of karaoke and café data

    Improvement of Wear Performance of Nano-Multilayer PVD Coatings under Dry Hard End Milling Conditions Based on Their Architectural Development

    Get PDF
    The TiAlCrSiYN-based family of PVD (physical vapor deposition) hard coatings was specially designed for extreme conditions involving the dry ultra-performance machining of hardened tool steels. However, there is a strong potential for further advances in the wear performance of the coatings through improvements in their architecture. A few different coating architectures (monolayer, multilayer, bi-multilayer, bi-multilayer with increased number of alternating nano-layers) were studied in relation to cutting-tool life. Comprehensive characterization of the structure and properties of the coatings has been performed using XRD, SEM, TEM, micro-mechanical studies and tool-life evaluation. The wear performance was then related to the ability of the coating layer to exhibit minimal surface damage under operation, which is directly associated with the various micro-mechanical characteristics (such as hardness, elastic modulus and related characteristics; nano-impact; scratch test-based characteristics). The results presented exhibited that a substantial increase in tool life as well as improvement of the mechanical properties could be achieved through the architectural development of the coatings

    Black Holes in Higher-Dimensional Gravity

    Full text link
    These lectures review some of the recent progress in uncovering the phase structure of black hole solutions in higher-dimensional vacuum Einstein gravity. The two classes on which we focus are Kaluza-Klein black holes, i.e. static solutions with an event horizon in asymptotically flat spaces with compact directions, and stationary solutions with an event horizon in asymptotically flat space. Highlights include the recently constructed multi-black hole configurations on the cylinder and thin rotating black rings in dimensions higher than five. The phase diagram that is emerging for each of the two classes will be discussed, including an intriguing connection that relates the phase structure of Kaluza-Klein black holes with that of asymptotically flat rotating black holes.Comment: latex, 49 pages, 5 figures. Lectures to appear in the proceedings of the Fourth Aegean Summer School, Mytiline, Lesvos, Greece, September 17-22, 200
    corecore