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Abstract: We find a family of novel supersymmetric phases of the D1-D5 CFT, which in

certain ranges of charges have more entropy than all known ensembles. We also find bulk

BPS configurations that exist in the same range of parameters as these phases, and have

more entropy than a BMPV black hole; they can be thought of as coming from a BMPV

black hole shedding a “hair” condensate outside of the horizon. The entropy of the bulk

configurations is smaller than that of the CFT phases, which indicates that some of the CFT

states are lifted at strong coupling. Neither the bulk nor the boundary phases are captured

by the elliptic genus, which makes the coincidence of the phase boundaries particularly

remarkable. Our configurations are supersymmetric, have non-Cardy-like entropy, and are

the first instance of a black hole entropy enigma with a controlled CFT dual. Furthermore,

contrary to common lore, these objects exist in a region of parameter space (between the

“cosmic censorship bound” and the “unitarity bound”) where no black holes were thought

to exist.
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1 Introduction and summary

The past few years have seen a great interest in the hair of black holes in anti-de Sitter

(AdS) spacetimes. In AdS gravity coupled to other fields such as gauge fields and charged

scalar fields, specifying the mass and charge of the configuration does not necessarily deter-

mine a unique black hole solution. Instead, one sometimes finds infinitely many solutions

describing bound states of multiple black holes, or black holes surrounded by a conden-

sate of other fields which is often referred to as “hair”.1 For non-extremal black holes the

existence of condensates, or hair, can be thought of as a thermodynamic instability for a

charged black hole to emit one or several of its charges; in certain regimes this can increase

the entropy of a black hole and thus it is entropically favorable for the black hole to reduce

its charge by shedding charged hair outside the horizon.

For example, [1–7] found that a Reissner-Nordstrom black brane in AdS Maxwell grav-

ity with a charged scalar (in bottom-up settings or embedded in string theory) is unstable

against forming a charged scalar condensate outside its horizon and breaking the U(1)

symmetry, and related this to the superconducting phase transition in the boundary field

theory. As a different example embeddable in string theory, [8] studied a small R-charged

black hole in AdS5 × S5. They found that the black hole is unstable against forming an

R-charged scalar condensate around it and constructed the endpoint configuration pertur-

batively when the charge is small.

Another example of this instability is the so-called entropy enigma [9, 10]: certain two-

center BPS black hole configurations can have larger entropy than a single-center solution

with the same asymptotic charges. Since for some charge choice one of these centers can

uplift in five dimensions to a smooth geometry with flux, these particular enigmas can

be thought of as black holes with hair around them. In [11], the entropy enigma was

investigated in the context of the AdS/CFT correspondence by embedding it in AdS3×S2.

It was found that this phenomenon occurs in the non-Cardy regime of the boundary CFT,

where the entropy can deviate from the one naively expected from the Cardy formula.

However, a complete CFT understanding of the entropy enigma has not been reached yet

because of the limited knowledge on the dual MSW CFT [12, 13].

The purpose of this paper is to study the phase diagram2 of the three-charge BPS

black hole in five dimensions, and to determine the existence of new phases that contain

1If one wants to reserve the word “hair” for genuine microstates of a black hole, then it is probably

better to call the condensate a “halo”, because this configuration is better thought of as a bound state of

a black hole and the condensate outside the horizon. However, we will use the word “hair” because this is

a commonly used terminology in the literature.
2Unless stated otherwise, the word phase in this paper will refer to a microcanonical phase.
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black holes with hair that have dominant entropy in certain regimes of parameters. For

large angular momentum the BPS states we find can be thought of as the endpoints of a

“thermodynamic” instability of a rotating D1-D5-P BPS black hole in AdS3 × S3, and we

identify these endpoint configurations both in the bulk and the boundary. Unlike previous

enigma examples, our system has the advantage of being well-understood on both sides of

holography.

More concretely, if Np is the momentum charge along the S1 direction of AdS3 and

JL, JR are the angular momenta3 in S3, then the left-moving energy L0 of the dual D1-D5

CFT is equal to Np (up to a constant shift) and the CFT R-charges are JL,R. Now, let us

consider a microcanonical ensemble specified by given fixed values of Np > 0 and JL (JR
is left unfixed), and ask what is the entropy of the ensemble. In the Cardy regime

Np − J2
L/4N ≫ N, (1.1)

where c = 6N is the central charge, the Cardy formula and the spectral flow symmetry of

the CFT give the entropy:

SCardy = 2π
√

NNp − J2
L/4. (1.2)

In the bulk this corresponds to a single-center BPS black hole — the BMPV black

hole [14], whose Bekenstein-Hawking entropy nicely reproduces the Cardy entropy (1.2).

Although the Cardy formula is valid only in the region (1.1), the bulk BMPV black hole

exists for any value of Np larger than the bound Np = J2
L/4N .4 Furthermore, one can

identify the CFT phase dual to the bulk BMPV black hole and show that this CFT phase

(known as the “long string” sector) also exists all the way down to the cosmic censorship

bound and that its entropy is always equal to (1.2) in the large N limit. Based on this,

the phase diagram of the D1-D5 system has been thought to be the one shown in figure 1;

above the cosmic censorship bound, the system is in the BMPV black hole phase while,

below the bound, the system is in the phase of a gas of supergravity particles.

However, in the parameter region outside (1.1), namely in the non-Cardy regime, the

Cardy formula (1.2) is no longer valid and there is no guarantee that the BMPV black

hole phase is thermodynamically dominant. We will analyze in detail the possible phases

both in the CFT and in the bulk, both analytically and numerically, and find new phases

that for the same charges are thermodynamically dominant over other known phases in

the non-Cardy regime. In the bulk, the new phase corresponds to a black hole surrounded

by a supertube, or to a black ring. We can interpret both bulk solutions as resulting from

the moulting or hair-shedding of the BMPV black hole. In one configuration the hair is

a supertube, and in the other one the hair is a Gibbons-Hawking or Taub-NUT center

(corresponding to a D6 brane in four dimensions) whose shedding changes the topology of

the black hole horizon and transforms it into a black ring. As a result, the phase diagram

shown in figure 1 is significantly modified in the non-Cardy regime.

3Our conventions are such that JL,R are integers.
4This bound is oftentimes called the “cosmic censorship bound” (e.g., ref. [15]), and we follow this

terminology. Strictly speaking, this bound should instead be called the “chronological censorship bound”

– 2 –



J
H
E
P
0
3
(
2
0
1
2
)
0
9
4

Figure 1. The “standard lore” but incorrect phase diagram of the D1-D5 system. Above the blue

dotted parabola Np = J2

L/4N (the cosmic censorship bound) is the BMPV black hole phase (light

blue), while below the parabola is the phase of a gas of supergravity particles (gray). The range of

Np, JL is bounded from below by the unitarity bound (green solid polygon).

BMPV

new
phase

c.s. bound unitarity bound

(a) CFT phase diagram in the RR sector at the

orbifold point

BMPV

black
ring

BMPV+tube

new phase subdominant

(b) Bulk phase diagram

Figure 2. The updated, correct phase diagram of the D1-D5 system for the CFT and bulk

(schematic, not to scale). The parameter range corresponds to the red rectangle in figure 1. The

abbreviation “c.s. bound” refers to the cosmic censorship bound Np = J2

L/4N . For further expla-

nations, see the text.

The CFT phase diagram is shown in figure 2a. If we start in the BMPV phase (light

blue) with some large value of Np and decrease Np, then at Np = JL/2 (red dotted line) a

new phase (light red region) becomes available before we reach the cosmic censorship bound

(thick blue dashed curve). As soon as it becomes available, this new phase entropically

dominates over the BMPV phase. As we further decrease Np, the BMPV phase disappears

at the cosmic censorship bound Np = J2
L/4N (blue dashed line) while the new phase

continues to exist and is dominant all the way down to the unitarity bound (green solid

line). Below the cosmic censorship bound, the phase of a gas of supergravity particles is

subdominant and not realized thermodynamically.

because, below this bound, the single-center black hole solution develops closed timelike curves outside the

horizon but not a naked singularity.
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The bulk phase diagram shown in figure 2b is somewhat similar, but there are some

distinctive differences. As we start from the BMPV phase and lower Np, a new phase

appears at Np = JL/2, but has less entropy than the BMPV black hole until we further

decrease Np and reach the red dotted curve in figure 2b. After that, the new phase is

dominant until the BMPV black hole disappears at the cosmic censorship bound (thin

blue dashed curve). Below that, the new phase is dominant all the way down to the

unitarity bound. Furthermore, for JL < N , the new phase is a BMPV black hole with a

hair of smooth geometry around it (light pink), while for JL > N it is a black ring (light

yellow). On the JL = N line, these two configurations are entropically degenerate but

remain distinct configurations.

Although in figure 2 we have shown only a small region of parameters Np and JL, by

the spectral flow symmetry of the bulk and of the boundary, the new phase exists in all

“wedges” below the cosmic censorship bound shown in figure 1 (see also figure 6).

The entropy of the CFT new phase is larger than that of the bulk new phase. Because

the CFT computation was done in the free limit (at the orbifold point), this implies that,

as we increase the coupling, some of the states that constitute the new phase in the CFT

get lifted and disappear by the time we reach the gravity point. However, this lifting is

quite moderate, and does not change the power of N that enters in the entropy formula,

but only its prefactor; the new phases both in the CFT and the bulk are black hole states

having an entropy of order O(N).

The fact that we have black holes below the cosmic censorship bound is intriguing for

the following reason. In [16, 17], it was shown that the (modified) elliptic genus computed

in CFT and the one computed in supergravity agree exactly for 5

Np ≤
JL
2

− N − 1

4
. (1.3)

This parameter range is shown in figure 2 as horizontally hatched regions and is below the

cosmic censorship bound. One expects that, once one turns on coupling, all states that are

not protected will lift, and all that remain at strong coupling are the states captured by

the elliptic genus. In [16, 17], the elliptic genus was correctly reproduced in supergravity

by counting particles, without including any black hole states. This appears to imply that

in the region (1.3) the only thing that exist in the bulk are supergravity particles and there

are no black hole states. This was the reason why the phase diagram was thought to be

as shown in figure 1. On the contrary, in the current paper we find black hole (and ring)

states in supergravity even in the region (1.3). This means that there are many states

which are not protected and are thus not captured by the elliptic genus but nevertheless

do not lift.6 This might be suggesting the existence of a new index capturing these states.

5In [16, 17] the relevant inequality was given in terms of NS sector quantities as LNS
0 ≤ N+1

4
. Here this

has been translated into the R sector.
6In d = 4,N = 4 theories, it has been argued [18] that multi-center solutions are not captured by the

supersymmetry index unless each center preserves 1/2 supersymmetry. Our multi-center solution is made

of a 1/4-BPS center and a 1/2-BPS center and thus is not captured by the supersymmetry index by the

general argument of ref. [18].
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It is possible that such an index is related to the “new moonshine” [19] on the hidden

underlying symmetry of K3 surfaces.

The original motivation for the current study was to find the microscopic description

of supersymmetric black rings [20–23] in the D1-D5 CFT.7 A CFT understanding of black

rings and their dipole charges [28–31] is of much interest in its own right and may help

us identify the boundary description of the family of smooth supergravity solutions found

in [26, 27]. In [24], a possible microscopic description of supersymmetric black rings in the

D1-D5 CFT was proposed but it was based on a phenomenological assumption, and hence

not entirely satisfactory. Here, we made attempts to make progress in this direction by

asking what is the most entropic configuration for given charges Np, JL. The new phase on

the CFT side has already been reported in [32], and in the current paper we are reporting

progress on the bulk side based on recent developments. It is interesting that the most

entropic configuration is indeed a black ring in a certain parameter region. We hope to

come back to the microscopics of black rings in near future.

It was noted in [9] that certain configurations of multi-center black rings can have

entropy larger than a single-center black hole with the same values of charges and angular

momenta. However, to our knowledge, no systematic search for the maximum entropy

configuration of multi-center black holes/rings has been done, and such configurations

have never been investigated in the context of the AdS/CFT correspondence.8

The plan of the rest of the paper is as follows. In section 2, after reviewing some

necessary background material, we study the phase diagram of the D1-D5 CFT. We find

a new phase that has more entropy than the BMPV phase, and give a physically-intuitive

picture for this. Then, we confirm the existence of the new phase more rigorously by

numerically evaluating the CFT partition function. In section 3, we explore the phase

diagram of the D1-D5 system in the dual supergravity description. We perform a thorough

analysis of two-center solutions and find black hole and ring configurations that have more

entropy than a single-center BMPV black hole in a certain region of parameters. Section 4 is

devoted to the discussion of the results and future directions. In the appendices, we present

technical details and further clarifications on the subjects discussed in the main text.

2 CFT analysis

In this section we study the possible phases of the D1-D5 CFT, for given momentum and

angular momentum charges. For large values of these charges (in the Cardy regime), the

Cardy formula predicts the entropy of the system which is known to be reproduced by the

entropy of the BMPV black hole in the bulk. However, outside the Cardy regime, there

7By a microscopic description we mean a description in the UV CFT, corresponding to the asymptotic

AdS3 region at infinity. Near the horizon of a supersymmetric black ring, there is another AdS3 region

which corresponds to an IR CFT. The IR CFT description of supersymmetric black rings was discussed

in [24, 25]. However, the IR CFT does not capture many interesting dynamical features of the D1-D5

system, such as dipole charges, multi-center solutions and the family of smooth geometries [26, 27], and

thus is not of interest in the present paper.
8The configurations found in [9] are not in the regime of parameters discussed in the current paper.

Their configurations have Np ∼
√
N while we are interested in Np ∼ N .

– 5 –
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is no formula for the entropy of general CFTs. In the D1-D5 CFT, however, the explicit

orbifold construction of the CFT allows us to make an educated guess on the phase outside

the Cardy regime and its entropy formula, which we will confirm by computer analysis. We

will find that, in a certain regime of parameter space, a new phase appears and entropically

dominates over the BMPV phase.

2.1 D1-D5 CFT

In this subsection we give a quick review of the D1-D5 CFT. For a more detailed review,

see for example [33].

Consider type IIB string theory on S1 ×M4 with N1 D1-branes wrapping S1 and N5

D5-branes wrapping S1×M4, where M4 = T 4 or K3. We take the size of M4 to be string

scale. The Higgs branch of this system flows in the IR to an N = (4, 4) SCFT whose target

space is a resolution of the symmetric product orbifold M = (M4)N/SN ≡ SymN (M4),

where SN is the permutation group of order N and N = N1N5 (N = N1N5 + 1) for

M4 = T 4 (for M4 = K3). The orbifold M is called the “orbifold point” in the space of

CFTs and the theory is easy to analyze at that point.

The CFT is dual to type IIB string theory on AdS3×S3×M4. To have a large weakly-

coupled AdS3, N must be large and the CFT must be deformed far from the orbifold point

by certain marginal deformations (for recent work see [34–36]). In this work we will consider

a new phase at the orbifold point and look for it at the supergravity point.

For presentation purposes, we will henceforth takeM4 = T 4, but much of the discussion

goes through also for M4 = K3. In particular, the existence of the new phase does not

depend on whether M4 = T 4 or K3 because it is constructed using structures common

to both.

The theory has an SU(2)L × SU(2)R R-symmetry which originates from the SO(4)

rotational symmetry transverse to the D1-D5 system. There is another SU(2)1 × SU(2)2
global symmetry which is broken by the toroidal compactification but can be used to classify

states. We label the charges under these symmetries as α, α̇ and A, Ȧ respectively. At the

orbifold point each copy of the CFT has four left-moving fermions ψαA, four left-moving

bosons ∂XAȦ, four right-moving fermions ψα̇A and four right-moving bosons ∂̄XAȦ. In

addition the CFT has twist fields σn which cyclically permute n ≤ N copies of the CFT on

a single T 4. One can think of these twist fields as creating winding sectors in the D1-D5

worldsheet with winding over different copies of the T 4.

The D1-D5 CFT is in the Ramond-Ramond sector because of asymptotic flatness

and supersymmetry. Elementary bosonic twist fields (without any bosonic or fermionic

excitations) are charged under SU(2)L × SU(2)R viz. σαα̇n or under SU(2)1 × SU(2)1 viz.

σABn while elementary fermionic twist fields are charged under SU(2)L × SU(2)1 viz. σαAn
or SU(2)R × SU(2)1 viz. σα̇An . A general Ramond sector ground state is made up of these

bosonic and fermionic twist fields with the total twist
∑

n = N as

|gr, gr〉 =
∏

n,α,α̇,A,Ȧ

(σαα̇n )Nn,αα̇(σABn )Nn,AB (σαAn )Nn,αA(σα̇An )Nn,α̇A ,

– 6 –
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(a) A ground state (b) A state with left excitations

(c) A state with right excitations (d) A state with left and right excitations

Figure 3. Various states in the Ramond sector of the D1-D5 CFT.

∑

n,α,α̇,A,Ȧ

n(Nn,αα̇ +Nn,AB +Nn,αA +Nn,α̇A) = N,

Nn,αα̇ = Nn,AB = 0, 1, 2, . . . , Nn,αA = Nn,α̇A = 0, 1. (2.1)

A general Ramond sector state is made of left- and right-moving excitations on the

Ramond ground states

|ex, gr〉, |gr, ex〉, |ex, ex〉 (2.2)

where “ex” means acting on Ramond ground states “gr” by the bosonic and fermionic

modes. In figure 3 we diagrammatically represent a Ramond ground state with no excita-

tions, left excitations only, right excitations only, and both. The arrows represent different

R-charges of elementary twists.

The states of the CFT are characterized by their left and right dimension (L0 and

L̄0) and R-charges (JL and JR). In our conventions, JL,R, the third components of the

SU(2)L,R generators ~JL,R are integers. The Ramond sector ground states all have the same

dimension L0 = L̄0 = N
4 . An excited state has dimension greater than that of the ground

state and any additional dimension is related to the left- and right-moving momentum

along the branes by

Np = L0 −
N

4
, N̄p = L̄0 −

N

4
(2.3)

The relation between the momentum and dimension is not so straightforward in the NS

sector as different twist sectors have different dimensions.

The CFT also has an outer automorphism called “spectral flow” [37]. Spectral flow by

odd units maps states from NS to R sector and vice versa whereas spectral flow by even

units maps states to states in the same sector. Under spectral flow by α units we have

L′
0 = L0 +

1

2
αJL +

1

4
α2N, J ′

L = JL + αN. (2.4)

2.2 The enigmatic phase

In this subsection, we will first describe two phases in CFT at the orbifold point which

are dual in the bulk to the BMPV black hole and to the maximally-spinning smooth

– 7 –
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(a) BMPV (b) Maximally Spinning (c) Enigmatic Phase

Figure 4. Three phases at the orbifold point of the D1-D5 CFT.

solution found by Balasubramanian, Keski-Vakkuri, Ross and one of the authors, and by

Maldacena and Maoz [38, 39]. We will then explicitly construct the new phase, which

we will call the enigmatic phase, in CFT by combining properties of the BMPV and the

maximally-spinning phases. This will become clear as we proceed. We will then put this on

a more rigorous footing by identifying the enigmatic phase in the BPS partition function

of the CFT. We will also show that the elliptic genus fails to capture the enigmatic phase.

Our construction will be at the orbifold point of the CFT. Since the elliptic genus fails

to capture the enigmatic phase, it is logically possible that this phase gets lifted once we

move away from the orbifold point of the CFT moduli space by turning on deformation

and go to the supergravity point. We will explore the possibility of an enigmatic phase on

the gravity side in the next section.

2.2.1 The BMPV phase

The BMPV black hole [14] has U(1)L × SU(2)R symmetry and has an entropy

SBMPV = 2π
√

NNp − J2
L/4. (2.5)

Black holes have entropy and thus their CFT duals are ensembles of states. The dual to

BMPV black holes consists of an ensemble of thermal excitations on the left-moving sector

on a long string

(exL)σ
++
N . (2.6)

The SU(2)L charge is carried by left-moving fermions. This phase is shown in a diagram-

matic way in figure 4(a).

The subleading corrections to the above picture come from O(1) winding in short

strings.

When the charges are large so that we are in the Cardy regime Np−J2
L/4N ≫ N , the

Cardy formula (and the spectral flow symmetry) yields the same entropy as the Bekenstein-

Hawking entropy of the black hole (2.5). Thus, in the Cardy regime, we have a nice

matching of the CFT and the bulk.

2.2.2 The maximally-spinning state

Refs. [38, 39] found a family of smooth solutions with U(1)L ×U(1)R symmetry that have

no horizon and thus no entropy. Their CFT dual states can be uniquely determined: they

have all the winding in single twists and their R-charges are in the largest multiplet:

(σ++
1 )N . (2.7)

The phase is shown diagrammatically in figure 4(b).

– 8 –
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This state has the largest possible value of JL among the ground states, namely JL =

N . Among other possible ground states with JL = N are

(σ++
1 )N−j(σ−+

1 )j , j = 0, 1, . . . , N. (2.8)

These form an SU(2)R multiplet with | ~JR| = N .

2.2.3 The enigmatic phase

In the above, we discussed the BMPV phase which dominates at large momenta and the

maximally-spinning state which has no momentum but very large angular momentum.

Now let us consider combining these two, namely an ensemble of states where there is one

long string and a condensate of short strings, and ask what is the entropy maximizing

ensemble with given Np, JL (we assume JL > 0 without loss of generality).

All the excitations are carried by the long string (fractionation ensures this is domi-

nant [40]). Let l be the number of short strings. Thus the long string has winding N − l.

The short strings are aligned with the left-moving angular momentum of the long strings

so have JL = l, and symmetrization ensure that the short strings form an SU(2)R mul-

tiplet with | ~JR| = l just as in (2.8). Thus this phase has R-symmetry broken down to

U(1)L ×U(1)R. This phase is shown in figure 4(c).

The entropy of this “enigmatic” phase comes from the long string sector which is

the same as that in the BMPV phase albeit with different winding number and angular

momentum

Senigma,l = 2π

√

(N − l)Np −
1

4
(JL − l)2. (2.9)

Maximizing this entropy with respect to l, the winding in the short strings, we get the

optimal number of short strings to be9

l = JL − 2Np (2.10)

and the entropy for this is

Senigma = 2π
√

Np(Np +N − JL). (2.11)

The enigmatic phase exists in the region where the square of the entropy is positive and

the number of short strings is greater than zero, namely

Np > 0, Np +N − JL > 0, JL − 2Np > 0. (2.12)

This means that Np ∼ JL ∼ N and therefore this phase exists outside the Cardy regime.

In addition the new phase is charged under SU(2)R with

| ~JR| = JL − 2Np. (2.13)

9Splitting the system into two parts and choosing the way of splitting so that the entropy is maximized

is reminiscent of the procedure taken in [8] where the system is split into a “non-interacting mix” of a black

hole and a charged condensate.
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BMPV phase Enigmatic phase

Figure 5. Phase diagram of D1-D5 CFT at the orbifold point.

The Np-JL diagram showing the BMPV and the enigmatic phases are plotted in figure 5.

It is straightforward to see that

S2
enigma − S2

BMPV =

(

JL
2

−Np

)2

≥ 0 (2.14)

and thus the enigmatic phase is dominant over the BMPV phase and smoothly merges

into it at the upper boundary of the “wedge” in figure 5. We emphasize that in the region

where the enigmatic phase and the BMPV phase coexist the former dominates in entropy.

Spectral-flowed enigmatic phase. The enigmatic phase was constructed by splitting

the CFT effective string into two parts. The long string carried all the excitations and thus

the entropy and the short strings carried part of the angular momentum but no excitations.

There is another configuration where the short strings carry part of the angular momentum

but no entropy and that is gotten by making each short-string excitation of the form

ψ+1
−1ψ

+2
−1σ

++
1 . (2.15)

In fact we can fill the fermions on the short strings up to a higher level η this way. For

example, the short string for η = 3 corresponds to

ψ+1
−3ψ

+2
−3ψ

+1
−2ψ

+2
−2ψ

+1
−1ψ

+2
−1σ

++
1 . (2.16)
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Figure 6. Spectral-flowed enigmatic phases

Such configurations are obtained from the original configuration by spectral flow (2.4) by

2η units. Using (2.3) to rewrite the enigmatic phase in terms of the dimension rather than

the momentum:

S = 2π

√

(

L0 −
N

4

)(

L0 − JL +
3N

4

)

(2.17)

one obtains the entropy of these spectral-flowed states:

S = 2π

√

[

L0 − ηJL +
(

η2 − 1

4

)

N
][

L0 − (η + 1)JL +
(

(η + 1)2 − 1

4

)

N
]

, (2.18)

which is just a spectral-flowed version of the entropy formula by −2η units. This expression

is valid in both NS and R sectors. We can then express this result in the Ramond sector

in terms of the momentum using (2.3)

S = 2π
√

[Np − ηJL + η2N ][Np − (η + 1)JL + (η + 1)2N ]. (2.19)

As a simple example of this formula we see that we get the expression for the mirror image

wedge (JL → −JL) by taking η = −1. The region in which the spectral-flowed new phase

exists is found by mapping the boundaries of the non-spectral-flowed new phase (2.12):

Np−ηJL+η2N > 0, Np−(η+1)JL+(η+1)2N > 0, JL(1+2η)−2Np−2η(1+η)N > 0.

(2.20)

In figure 6 we show four such enigmatic phases for η = −2,−1, 0, 1.

Note that, although the arguments above are forM4 = T 4, the new phase should exist

also for M4 = K3 with the same entropy formula (2.11). This is because the structures we

used above, such as effective strings and operators σ±+, are common to both T 4 and K3.

2.3 Numerical evaluation of partition function

The analysis of the previous section showing a new “enigmatic” phase can be put on a

firmer footing by looking at the partition function which counts all the states of the system

– 11 –



J
H
E
P
0
3
(
2
0
1
2
)
0
9
4

with given charges. We will evaluate the BPS partition function at the orbifold point of

the CFT for both T 4 and K3 compactifications, and find that it indeed shows the growth

expected from the entropy of the enigmatic phase. In the non-Cardy regime where the

enigmatic phase exists, the BPS partition function is not easy to evaluate because we

cannot use its modular properties. We overcome this problem by evaluating it numerically.

The BPS partition function computes the absolute degeneracy but is not protected

under marginal deformations unlike the elliptic genus. We will also look at the (modified)

elliptic genus on K3 (T 4) in the non-Cardy regime where the enigmatic phase exists to

see if we find any trace of the enigmatic phase. The result is that these elliptic genera

do not capture the enigmatic phase. This is as it should be, because the new phase

exists in a region where the supergravity elliptic genus was found to match that of the

CFT [16, 17]. Thus finding a new black object phase in the elliptic genera would have

been a contradiction. In appendix D, we give an argument why the particular states of the

form of a long string with excitations on it plus multiple short strings of length one do not

contribute to the elliptic genus.

The readers who are not interested in the details of the computation can directly jump

to section 2.3.3 where the final results are presented.

We begin by first defining the quantities we compute. The BPS partition function is

defined as

χPF = TrRR;any,gnd[q
L0− c

24 yJL ], q = e2πiσ, y = e2πiυ (2.21)

where the trace is taken over all states in the left-moving Ramond sector and ground states

in the right-moving Ramond sector. Namely, χPF counts BPS states only. The elliptic

genus is defined as

χEG = TrRR[(−1)JL−JRqL0− c
24 yJL ] (2.22)

and the modified elliptic genus as

χMEG = TrRR[(−1)JL−JR(JR)
2qL0− c

24 yJL ]. (2.23)

where the traces are taken over all states in the left and right Ramond sectors. Even though

the trace is taken over all states, it is easy to see that the elliptic genera only count states

in the right-moving sector.

2.3.1 BPS partition function and elliptic genera on single copy of K3 and T 4

Let us first discuss the BPS partition function and elliptic genera on a single copy of T 4

and K3. Based on this, we will compute the BPS partition function and elliptic genera for

symmetric products SymN (K3) and SymN (T 4).

• Elliptic genus on K3

The elliptic genus on K3 was found in [41, 42] and is given by

χEG(q, y;K3) = 8

[

(

ϑ2(υ, σ)

ϑ2(0, σ)

)2

+

(

ϑ3(υ, σ)

ϑ3(0, σ)

)2

+

(

ϑ4(υ, σ)

ϑ4(0, σ)

)2
]

. (2.24)
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The elliptic genus is protected and is the same everywhere in the moduli space of K3

surfaces. From the definition of elliptic genus we see that the coefficient of qmyl counts

the difference between the number of bosonic and fermionic states with L0 = m+ c
24

and JL = l. Thus we have

χEG(q, y;K3) =
∑

m≥0,l

(

cBK3(m, l)− cFK3(m, l)
)

qmyl. (2.25)

• BPS partition function on K3

The BPS partition function is not invariant under changes in moduli and thus depends

on the point in the K3 moduli space where it is evaluated. So, in principle we should

evaluate it at all points in the moduli space in order to show that it points toward

the existence of the enigmatic phase. However, the BPS partition function can be

computed only at special points in the K3 moduli space, and that is what we will

content ourselves with.

The partition function for K3 can be computed [41] at the orbifold points10 in the

K3 moduli space, where K3 can be written as T 4/Zl (l = 2, 3, 4, 6), and the BPS

partition function can be extracted from it. For illustrative purposes, we present

the BPS partition function at the orbifold point where K3 = T 4/Z2. This can be

evaluated in a straightforward way using the results of [41] and is found to be11

χPF (q, y;K3 = T 4/Z2) = 2
ϑ2(υ, σ)

2

η(σ)6
+ 16

(

ϑ4(υ, σ)

ϑ3(0, σ)

)2

+ 8

(

ϑ2(0, σ)

ϑ4(0, σ)

)2(ϑ2(υ, σ)

ϑ3(0, σ)

)2

.

(2.26)

From the definition of the partition function we can see that the coefficient of qmyl

counts the total number of states, both bosonic and fermionic, with L0 = m+ c
24 and

JL = l. Thus we have

χPF (q, y;K3 = T 4/Z2) =
∑

m≥0,l

(

cBK3(m, l) + cFK3(m, l)
)

qmyl. (2.27)

• The modified elliptic genus on T 4

The usual elliptic genus on T 4 vanishes identically because of extra fermion zero

modes. On the other hand, the modified elliptic genus, which soaks up the extra

fermion zero modes, is nonvanishing and given by [17]

χMEG(q, y;T
4) = −2

[

θ1(υ, σ)

η(σ)3

]2

. (2.28)

The coefficient of qmyl again counts the difference between number of bosons and

fermions of with L0 = m + c
24 and JL = l. However because half the fermion zero

10These orbifold points in the moduli space of K3 surfaces are not to be confused with the orbifold points

in the moduli space of D1-D5 CFT where the target space is a symmetric orbifold of the K3 surface.
11We ignored zero modes because they do not contribute to the BPS partition function for generic moduli

of the parent T 4.
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modes are soaked up, the coefficient only counts the states built on the other half of

the fermion zero modes [17]. To find the modified elliptic genus for the symmetric

product, we will only need the total coefficient

χMEG(q, y;T
4) =

∑

m≥0,l

cMEG;T 4(m, l)qmyl. (2.29)

• BPS partition function on T 4

The BPS partition function for T 4 is straightforward to evaluate because it is a free

theory. The result is found to be12

χPF (q, y;T
4) = 4

[

ϑ2(q, y)

η(q)3

]2

. (2.30)

The coefficient of qmyl counts the total number of states, both bosonic and fermionic,

with L0 = m + c
24 and JL = l. However from the vanishing of the elliptic genus for

T 4 we know that the number of bosonic and fermionic states are equal and so we

have

χPF (q, y;T
4) =

∑

m≥0,l

cPF ;T 4(m, l)qmyl, (2.31)

where

cBT 4(m, l) = cFT 4(m, l) =
1

2
cPF ;T 4(m, l). (2.32)

2.3.2 BPS partition function and elliptic genera on SymN (K3) and SymN (T 4)

Next we discuss the elliptic genus and BPS partition function on SymN (K3) and the

modified elliptic genus and BPS partition function on SymN (T 4).

• Elliptic genus on SymN (K3)

In [43] the generating function for the elliptic genus on the symmetric product

SymN (K3) was found to be

∑

N≥0

pNχEG(q, y; Sym
N (K3)) =

∏

n≥1,m≥0,l

1

(1− pnqmyl)c
B
K3(mn,l)−cFK3(mn,l)

. (2.33)

We can expand the elliptic genus for SymN (K3) as

χEG(q, y; Sym
N (K3)) =

∑

M≥1,L

CEG;K3(N,M,L)qMyL, (2.34)

where CEG;K3(N,M,L) counts the difference in bosonic and fermionic states with

L0 =M + c
24 and JL = L on SymN (K3). Let us define

SEG;K3(N,M,L) = log |CEG;K3(N,M,L)|. (2.35)

By a slight abuse of terminology, we will refer to the logarithm of (modified) elliptic

genus, such as SEG;K3(N,M,L) above, as “entropy”.

12Again, we ignored zero modes because they do not contribute for the generic moduli of T 4.
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• BPS partition function on SymN (K3 = T 4/Z2)

The generating function for the BPS partition function on the symmetric product

SymN (K3 = T 4/Z2) can be easily found using the techniques of [43] to be

∑

N≥0

pNχPF (q, y; Sym
N (K3 = T 4/Z2)) =

∏

n≥1,m≥0,l

(1 + pnqmyl)c
F
K3(mn,l)

(1− pnqmyl)c
B
K3(mn,l)

. (2.36)

We can expand the BPS partition function for SymN (K3 = T 4/Z2) as

χPF (q, y; Sym
N (K3 = T 4/Z2)) =

∑

M≥1,L

CPF ;K3(N,M,L)qMyL, (2.37)

where CPF ;K3(N,M,L) counts the total number of states, both bosonic and fermionic,

with L0 = M + c
24 and JL = L on SymN (K3 = T 4/Z2). We denote the associated

entropy by

SPF ;K3(N,M,L) = logCPF ;K3(N,M,L). (2.38)

• Modified elliptic genus on SymN (T 4)

In [17] the generating function for the modified elliptic genus on SymN (T 4) was found

to be

∑

N≥0

pNχMEG(q, y; Sym
N (T 4)) =

∑

s (pnqmyl)s cMEG(mn, l). (2.39)

The modified elliptic genus for SymN (T 4) can be expanded as

χMEG(q, y; Sym
N (T 4)) =

∑

M≥1,L

CMEG;T 4(N,M,L)qMyL, (2.40)

where CMEG;T 4(N,M,L) counts the difference in bosonic and fermionic states with

L0 = M + c
24 and JL = L on SymN (T 4). However because it soaks up half the zero

modes it counts only the states built on the other half of the zero modes. We denote

the associated “entropy” by

SMEG;T 4(N,M,L) = log |CMEG;T 4(N,M,L)|. (2.41)

• BPS partition function on SymN (T 4)

The generating function for the BPS partition function on the symmetric product

SymN (T 4) can also be easily found using the techniques of [43] to be

∑

N≥0

pNχPF (q, y; Sym
N (T 4)) =

∏

n≥1,m≥0,l

(

1 + pnqmyl

1− pnqmyl

)

1
2
cPF ;T4(mn,l)

(2.42)

where we used the relation (2.32). We can expand the partition function for

SymN (T 4) as

χPF (q, y; Sym
N (T 4)) =

∑

M≥1,L

CPF ;T 4(N,M,L)qMyL, (2.43)
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Figure 7. The logarithm of the elliptic genus for SymN (K3).

where CPF ;K3(N,M,L) counts the total number of states, both bosonic and

fermionic, with L0 = M + c
24 and JL = L on SymN (T 4). We denote the associ-

ated entropy by

SPF ;T 4(N,M,L) = logCPF ;T 4(N,M,L). (2.44)

2.3.3 Numerical evaluation of partition functions and elliptic genera

Here we give the results of the numerical evaluation of the various entropies (2.35), (2.38),

(2.41) and (2.44). We present the results by plotting S(N,Np, JL) (blue dots) against JL
for different values of N with N

Np
= 5 along with the BMPV entropy (thin interior blue line)

given by the Cardy formula (2.5) and the enigmatic phase entropy (2.11) (thin exterior red

line).

• Elliptic genus on SymN (K3)

In figure 7 we plot SEG;K3(N,Np, JL) against JL. We see that for small values of JL
the elliptic genus matches the Cardy formula but not the new phase. At some value

of JL “shoulders” appear in the elliptic genus and it deviates from the Cardy formula

but still does not match the enigmatic phase entropy. Further plots for larger values

of N,Np keeping Np/N = 1/5 fixed show us that the shoulders appear at larger values

of JL and are smaller. In fact, a numerical analysis hints at the bump coming from

logarithmic corrections to the Cardy formula that vanish as N,Np → ∞. We thus

conclude that the elliptic genus does not capture the enigmatic phase and asymptotes

to the BMPV entropy.13

• BPS partition function on SymN (K3 = T 4/Z2)

In figure 8 we plot SPF ;K3(N,Np, JL) against JL. We see that the partition function

for SymN (K3) indeed captures the new phase. With larger values of N the match of

the partition function to the enigmatic phase entropy (2.5) calculated in the large N

limit in the previous subsection seems to get better but we were limited in our analysis

by computational power. Although here we presented the result for SymN (K3 =

T 4/Zl) with l = 2, we worked out the other cases l = 3, 4, 6 as well and obtained

similar behavior.

13This is consistent with [44] where it was shown that the K3 elliptic genus goes as (1.2) as long as all

charges N,Np, JL are large, both in the Cardy and non-Cardy regimes.
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Figure 8. The logarithm of the BPS partition function for SymN (K3 = T 4/Z2).
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Figure 9. The logarithm of the modified elliptic genus for SymN (T 4).
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Figure 10. The logarithm of the BPS partition function for SymN (T 4).

• Modified elliptic genus on SymN (T 4)

In figure 9 we plot SMEG;T 4(N,M,L) against JL. Just as the elliptic genus for

SymN (K3), the modified elliptic genus approaches the BMPV entropy for large N

but fails to capture the enigmatic phase.

• BPS partition function on SymN (T 4)

In figure 10 we plot SPF ;T 4(N,Np, JL) against JL. We see that the BPS partition

function for SymN (T 4) captures the enigmatic phase, just as that for SymN (K3).

In conclusion, the numerical analysis of the BPS partition function, which counts the

absolute degeneracy, confirms the existence of the new enigmatic phase with entropy (2.11)

at the orbifold point of the D1-D5 CFT, both for T 4 and K3. On the other hand, the
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(modified) elliptic genus, which is an index, does not capture the new enigmatic phase.

One might naively take this as indicating that, once we depart the orbifold point of the

CFT, the enigmatic phase gets lifted and is nowhere to be found in the supergravity regime.

However, we will see that this is not so.

3 Supergravity analysis

Having established the existence of a new ensemble in the CFT let us now consider the

possible bulk dual. From the structure of the boundary theory we might imagine that

the dual configuration is a BMPV black hole surrounded by a maximally spinning super-

tube [45] (which can be thought as sourcing the geometries dual to the maximally-spinning

state) carrying some of its JL. To systematically analyze possible bulk configurations we

will first dualize to a IIA or M-theory frame where the full set of U(1) × U(1) symmetric

configurations were classified in [26, 27, 46]. We will then argue that the putative duals are

necessarily two-centered, and then use the bulk version of spectral flow symmetry to scan

through all possible two center duals. More specifically, we “flow” any given two-centered

configuration to a particular, tractable class of configurations where we can search for

entropy-maximizing configurations.

3.1 Multi-centered Solutions in IIA/M-theory

Let us consider M-theory compactified on a T 6 (spanning x5, . . . , x10 = z) to five dimen-

sions.14 In [21, 47] the most general class of solutions preserving the same supersymmetries

as three stacks of M2 branes were written down, and in [23] the most general class of so-

lutions preserving a U(1) isometry were classified (see also [26, 27, 46, 48]).

We will review the form of these solutions, using notation mostly15 following [49]. Our

treatment will be somewhat concise; the reader is referred to [26, 49] for more details. The

metric of the solutions is

ds211 = −Z−2/3(dt+ k)2 + Z1/3ds2HK + Z1/3
(

Z−1
1 dx256 + Z−1

2 dx278 + Z−1
3 dx29z

)

, (3.1)

with Z = Z1Z2Z3. We mention in passing that this solution also requires a five dimensional

gauge field but this will not be relevant for our analysis. This is the most general metric

preserving the same supersymmetries as the three-charge black hole [21].

The 4-d metric ds2HK is hyperkähler and if we take it to be tri-holomorphic (possessing a

translational U(1) isometry) then the most general solution is a Gibbons-Hawking space [50]

ds2HK = V −1(dψ +A)2 + V
(

dy21 + dy22 + dy23
)

, dA = ∗dV (3.2)

with ψ ∼= ψ + 4π the periodic coordinate. Here, and in what follows, ∗ denotes the Hodge

dual with respect to the flat R3 base space with coordinates y1,2,3.

14We could equally well consider M-theory on K3×T 2 and the five dimensional part of the discussion

would go through unaltered.
15Our notation will differ in that our harmonic M̃ is twice the M appearing in [49], Mthere = M̃here

2
. To

make this distinction clear we use M̃ for M with our normalization.
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The parameters entering into the above metric are

ZI = LI +
CIJKK

JKK

2V
, k = µ(dψ +A) + ω

µ =
M̃

2
+
KILI
2V

+
CIJKK

IKJKK

6V 2

(3.3)

with I = 1, 2, 3 and CIJK = |ǫIJK |. The one-form ω satisfies

∗ dω =
1

2

(

V dM̃ − M̃dV +KIdLI − LIdK
I
)

. (3.4)

The solution is entirely specified by eight harmonic functions in R
3: V , KI , LI and M̃

V =
∑

p

np
rp

+n0, KI =
∑

p

kIp
rp

+kI0, LI =
∑

p

lpI
rp

+l0I , M̃ =
∑

p

mp

rp
+m0. (3.5)

The labels p = 1, . . . , N run over the number of centers with rp = |~x − ~xp| the distance

from each center in the flat R3 metric. The choice of constants in the harmonic functions

h = {n0, kI0, l0I ,m0} (3.6)

fixes the asymptotic structure of the spacetime. The charges

Γp = {np, kIp, lpI ,mp} (3.7)

at a given center p correspond, in the M-theory frame, to KK-monopole, M5, M2, and

KK-momentum charge, respectively, where the monopole and momentum charge are along

the ψ circle. As usual, when we reduce M-theory to IIA along ψ these respectively become

D6, D4, D2, and D0 charges, and we will mostly use this language.16

The charges that appear in the harmonic functions above are dimensionful quantities

that characterize a supergravity solution, and can be related to the quantized brane charges

of the solution (that give the CFT charges) via proportionality constants that depend on

the moduli and coupling constants of the solution. These relations depend on the duality

frame, and can be straightforwardly derived or found in many references (see for example

eq. (2.3) in [24] or appendix D of [49]). To un-clutter notation, in the rest of the paper

we pick a particular set of values for the moduli such the supergravity charges are always

equal to the quantized charges.

3.1.1 Entropy, Angular momentum and CTCs

The solutions given above generically carry angular momentum in R
3 coming from crossed

electric and magnetic fields (recall that in four dimensions D4 branes and D2 branes are

electromagnetic duals of each other, and so are D6 branes and D0 branes). This can be

read off from the asymptotic value of ω as (see e.g. [46])

~J (3) =
∑

p<q

〈Γp,Γq〉
rpq

~rpq (3.8)

16In the conventions used in this paper the numbers appearing in (3.7) are the integer charges of KK-

monopole, M5, M2 and KK-momentum. For details see appendix E.
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where ~rpq ≡ ~xp − ~xq and

〈Γp,Γq〉 = npmq + kIpl
q
I − lpIk

I
q −mpnq (3.9)

gives the electromagnetic pairing.

A given center Γp may correspond to a black object with a horizon at rp = 0; the area

can be computed by evaluating

S(r) = 2π
√

D(r) = 2π
√

Z1Z2Z3V − µ2V 2 (3.10)

at the horizon giving (in terms of the charges) the E7(7) invariant

D(Γp) =− 1

4
m2
pn

2
p −

1

6
mpCIJKk

I
pk

J
p k

K
p − 1

2
mpnpk

I
pl
p
I −

1

4
(kIpl

p
I )

2

+
1

6
npC

IJK lpI l
p
J l
p
K +

1

4
CIJKCIMN l

p
J l
p
Kk

M
p k

N
p .

(3.11)

The function D(r) is proportional to the gψψ component of the metric, and so its

positivity effects the causal structure of the spacetime; if D(r) < 0 in some region the

metric will contain closed timelike curves (CTCs) and must be discarded as unphysical.

This constraint will play an important role in what follows.

Another necessary but not sufficient set of conditions for the absence of CTCs are the

N − 1 so-called integrability (or “bubble”) equations

N
∑

q=1,q 6=p

〈Γp,Γq〉
rpq

= 〈h,Γp〉 (3.12)

which, for two centers, fix the inter-center separation.

The condition (3.12) is a no-CTC condition in the neighborhood of the centers but a

more general no-CTC condition is the global positivity of

Z1Z2Z3V − µ2V 2 − |ω|2 ≥ 0, (3.13)

which ensures the existence of a time function [27]. This is, in general, a difficult condition

to check but it will play a role in simplifying our analysis. We will often employ the weaker

(necessary but not sufficient) condition D(r) > 0 to constrain our choice of solutions.

3.1.2 Gauge symmetries and “Spectral Flow”

The solutions above are invariant [48] under a family of “gauge transformations”17

parametrized by three constants, gI :

V → V, KI → KI + gIV,

LI → LI − CIJKg
JKK − 1

2
CIJKg

JgKV,

M̃ → M̃ − gILI +
1

2
CIJKg

IgJKK +
1

6
CIJKg

IgJgKV.

(3.14)

17These are generated by gauge transformations of the 10-dimensional B-field in the IIA frame.
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Another set of transformations18 parametrized by γI , are [51]

M̃ → M̃, LI → LI − γIM̃,

KI → KI − CIJKγJLK +
1

2
CIJKγJγKM̃,

V → V + γIK
I − 1

2
CIJKγIγJLK +

1

6
CIJKγIγJγKM̃.

(3.15)

While the latter are not symmetries of the solutions they are clearly related to the trans-

formation of (3.14) via electric-magnetic duality. These transformations can, in fact, be

generated by U -dualities and, in the IIB frame, by diffeomorphisms (see [51] for more

details). As the entropy function (3.11) is, by construction, U -duality invariant these

transformations preserve the entropy of the centers. The charges at each center, however,

are not invariant so we can use these transformations to transform the charges to a con-

venient form. Thus these symmetries will greatly simplify the task of scanning through

putative bulk dual solutions. We will generally refer to these as g- and γ-transformations,

respectively.

3.1.3 T-dualizing to the IIB frame

The metrics given above correspond to solutions of IIA string theory compactified on T 6

with D6, D4, D2, D0 charges but, as we are interested in the D1-D5 system in IIB, we

must dualize to this frame. An appropriate set of dualities consists of a KK reduction to

IIA on x9 (rather than ψ), followed by three T -dualities along x5, x6 and z = x10 yielding

the following charges.










M2(56)

M2(78)

M2(9z)











KK on x9 to IIA−−−−−−−−−−→











D2(56)

D2(78)

F1(z)











T56z−−−→











D1(z)

D5(5678z)

P (z)











(3.16)

while the M5 charges become dipole charges in IIB










m5(ψ789z)

m5(ψ569z)

m5(ψ5678)











KK on x9 to IIA−−−−−−−−−−→











d4(ψ78z)

d4(ψ56z)

ns5(ψ5678)











T56z−−−→











d5(ψ5678)

d1(ψ)

kk(ψ5678; z)











(3.17)

The final solution has a KK-monopole dipole charge along the ψ5678 directions with its spe-

cial transverse circle in the z direction, denoted by kk(ψ5678; z). The original M-theory KK

and momentum modes along the Gibbons-Hawking isometry direction ψ (corresponding

upon ψ-reduction to D6 and D0 in the IIA) are relatively inert under these transformations

and go over to kk(56789z;ψ) and P (ψ) in IIB.

The resultant NSNS fields are [49]

ds2IIB = − 1

Z3

√
Z1Z2

(dt+ k)2 +
√

Z1Z2 ds
2
HK +

Z3√
Z1Z2

(dz +A3)2 +

√

Z1

Z2
dx25678 (3.18)

18These transformations were called “Spectral Flow” transformations in [51] because when the solutions

are dualized to asymptotically AdS3 × S3 IIB solutions (as explained below) one of them corresponds to a

spectral flow of the dual CFT.
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eΦ =
Z1

Z5
, Bµν = 0 (3.19)

and there is also an RR potential, C(2), corresponding to the D1 and D5 charge. In

order to determine when this metric is asymptotically-AdS (as we will explain in detail in

appendix A) we will need

A3 =
K3

V
(dψ +A) + ξ3 − 1

Z3
(dt+ k), ∗dξ3 = −dK3. (3.20)

When there are no dipole charges, (KI = 0), we see from (3.3) that the ZI reduce to simple

harmonic functions and the metric above is the usual D1-D5-P black hole metric.

3.1.4 AdS3×S3 and the AdS/CFT Dictionary

If we consider a system with n 6= 0 (net D6 charge in IIA) then we can take a decoupling

limit such that the solution is asymptotically AdS3×S3/Zn. We review the AdS/CFT

dictionary for these solutions as we will need it in what follows; for details of the decoupling

limit the reader is referred to appendix A.19

We consider a total charge

Γ = {n, kI , lI ,m} (3.21)

and we set all the constants h = {n0, kI0 , l0I ,m0} to zero except l03 = 1 and

m0 = −k
3

n
. (3.22)

The choice to set l03 6= 0 yields AdS asymptotics and the requirement20 that 〈Γ, h〉 = 0

then fixes the choice of m0. Of course if k3 = 0 then even m0 = 0 (but we do not allow

n = 0 as this does not generate an AdS3×S3 geometry). Note that as a consequence of

these asymptotics the integrability equations (3.12) imply that centers that do not have

either D6 charge or the D4 charge k3p cannot form bound states inside AdS3 (otherwise the

right hand side of (3.12) is zero).

Most CFT quantum numbers can be read off from the asymptotic values of the charges

as follows

N1 ∼ Z
(1)
1 ∼ l1 +

k2k3

n
, Np ∼ Z

(1)
3 ∼ l3 +

k1k2

n
,

N5 ∼ Z
(1)
2 ∼ l2 +

k1k3

n
, JL ∼ 2µ(1) ∼ m+

kI lI
n

+
2k1k2k3

n2

(3.23)

where the superscript “(1)” on a quantity f means to pick out the coefficient of the order

1/r term from the large r expansion of f . For Z1, Z2 this is the leading term but for Z3

the leading piece is the constant l03. Note that the constraint (3.22) guarantees that µ has

no leading constant piece.

19See also the appendix of [51].
20Which simply follows from also summing over the index p on both sides of eq. (3.12) and using the

anti-symmetry of the pairing 〈·, ·〉.
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As we explained above, the quantized charges that characterize the CFT are related to

the “supergravity” charges that one obtains from the asymptotics of the warp factors via

proportionality constants that depend on the moduli and coupling constants of the solution.

However, given that our phase is a hybrid between the BMPV phase and the maximally

spinning phase, we can always use the known relation between these CFT phases and

their dual bulk solutions to relate the supergravity and CFT charges. Alternatively, we

can work at some values of the moduli where the supergravity and quantized charges are

always equal, which is what we will do through the rest of this paper.

In particular, the charge JL is to be identified with JL of the CFT up to a sign that

we will discuss below. Furthermore, as with JL, we will define a bulk charge JR related to

the CFT charge JR up to a sign. The charge JR comes from the SO(3)∼=SU(2) angular

momentum, ~J (3), of the R
3 base of the solutions (which becomes one of the SU(2)’s in

the SO(4) isometry group of S3 in the near horizon geometry) so can be read off from the

asymptotic value of ω

JR ∼ 2ω(1). (3.24)

Unlike the other CFT charges JR depends not on the total bulk charge but on the distri-

bution of charges between the centers. For two centers (to which we will turn presently)

this reduces to

JR = 〈Γ1,Γ2〉. (3.25)

Note that we could just as well have chosen JR = 〈Γ2,Γ1〉 which would differ from the

definition above by a minus sign. To fix conventions however we will define JR as above and

then relate it to the JR in the CFT (which we have defined to be positive) via JR = ±JR.

3.1.5 A Note on Signs

When identifying the CFT quantum numbers with those of the bulk we must be careful to

incorporate potential physically-meaningful sign differences. The sign of N1N5 is fixed by

the requirement of giving a positive AdS3 central charge and the sign of Np is fixed with

respect to this.21

The angular momenta JL and JR are related to those in the CFT but there is no

canonical way to fix the signs. In the CFT we have taken, without loss of generality,

JL, JR > 0 and we would like to do the same in the bulk. From the expression for JL we

see that we can flip its sign simply by sending kI ,m to −kI ,−m which is a symmetry of

the solution. This also flips the sign of JR as the intersection product 〈Γ1,Γ2〉 is odd under

this symmetry. As mentioned above we also have the further freedom to change the sign of

JR by switching the order Γ1 ↔ Γ2 but for notational clarity let us fix the definition of the

scalar quantity JR := 〈Γ1,Γ2〉 and then define ~JR = JR x̂12 with ~x12 a unit vector between

the two centers. In order to match conventions with the CFT we will measure the angular

momentum at infinity along an axis aligned with ~JR so that JR > 0. In terms of JR this

gives JR = ±JR. Thus we can always arrange for JL, JR > 0 in the bulk but, as we will

21When M4 = T 4, neither sign of Np will break supersymmetry. However, in the N = 2 formalism we

are working in, only one sign is manifestly supersymmetric and allowed.
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see below, once we have fixed charge conventions such that JL > 0, we have to check the

sign of JR to determine if JR = JR or −JR.

3.2 Two-centered Solutions in AdS3×S3

While a general bulk solution in the class considered above may have many centers we will

now argue that the putative duals to the new CFT phase must be two-center configurations.

This follows from the observation that an N -center solution has 3N − 3 parameters (3N

given by ~rp minus the three center of mass parameters) constrained by N − 1 equations

giving a 2N−2 dimensional solution space. Generically, each point in this space corresponds

to a different value of JR via (3.8). As the leading entropy comes from summing the

entropy of each center and does not depend on the locations of the centers, an N -center

configuration generically has a fixed (leading) entropy but a range of JR.
The new phase in the CFT, however, is characterized by a fixed value of JR that

maximizes the entropy. We thus expect a bulk configuration with fixed JR. It is not hard
to see that this corresponds to N = 2; for two centers J (3) is fixed and only its orientation

is unfixed (yielding two parameters {θ, φ}). Thus we can restrict our analysis to two-center

configurations.

3.2.1 Stability and Smoothness

To further constrain the problem, let us consider the partition of a fixed total charge into

two centers Γ = Γ1 + Γ2 and the entropy of the associated configuration

S2-center = S(Γ1) + S(Γ2). (3.26)

One might naively imagine, based on the intuition that black holes are thermodynamic

ensembles, that such a partition is always entropically disfavorable as combining two en-

sembles generally increases the total entropy:

S1-center(Γ1 + Γ2)
?
> S2-center = S(Γ1) + S(Γ2). (3.27)

It is clear, however, from examples such as the entropy enigma of [10] that such intuition is

misguided and there are examples when a two-center configuration has larger entropy than

a single-center configuration. Because of this, and because of the non-vanishing constant

value of JR observed in the CFT, we restrict ourselves to two-center configurations and

look for the ones with the most entropy.

To find them, one would need to do a stability analysis based on maximizing the total

entropy of a partition into two charges:

S2-center = S(Γ− Γ2) + S(Γ2), (3.28)

If the configuration is stable (locally entropy-maximizing), the Hessian of S2-center with

respect to Γ2 should have only negative eigenvalues. If there are some positive eigenvalues,

the configuration is entropically unstable against shedding charge from one center to the

other.
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Although the analysis of the Hessian for the general partition Γ2 is technically rather

difficult, there is one situation where one might expect stability: when one center is smooth

and carries no macroscopic or microscopic entropy — such a center can no longer shed

charge to the other center without producing closed timelike curves. Such smooth cen-

ters, first discussed in [26, 27], correspond in four dimensions to D6 branes with Abelian

worldvolume fluxes [52], and have also appeared in the N = 2 entropy enigma [11]. In ap-

pendix C we will demonstrate local entropic stability for two-center configurations where

all the entropy is carried by one center.

While other two center configurations might be entropically stable, they are probably

non-generic and thus will impose many additional charge constraints. Although we cannot

entirely rule out stable configurations with two horizons, motivated by the entropy enigma

of [11] and the fact that configurations with a smooth center live on the boundary of charge

space and are isolated (in the sense of not being continuously connected to other charge

configurations), we will restrict our analysis to configurations with one smooth center.

Requiring S(Γ2) = 0 and smoothness22 at r2 fixes the charge Γ2 to satisfy [26, 27, 49]

lI = −CIJKk
JkK

2n
, m =

k1k2k3

n2
(3.29)

from which it follows [52] that center “2” carries no microscopic entropy as it is gauge-

equivalent (by choosing the appropriate gI in eq. (3.14)) to n D6-branes in IIA or to a Zn

quotient singularity in M-theory.

Thus we can reduce our problem to considering solutions specified by the following

charges and asymptotics

Γ1 =
{

1− α,
{

k1, k2, k3
}

, {l1, l2, l3} ,m
}

,

Γ2 =
{

α,
{

αp1, α p2, α p3
}

,
{

−αp2p3,−αp1p3,−αp1p2
}

, α p1p2p3
}

,

h =
{

0, {0, 0, 0}, {0, 0, 1},−k3 − αp3
}

(3.30)

where h denotes the “vector” of constants in the harmonic functions. One can check that

Γ2 satisfies (3.29) and so corresponds to a smooth center with S(Γ2) = 0 for any choices of

α, pi. By charge quantization, all the entries of Γ2, such as α, αp1, and αp2p3, are assumed

to be integers. Note we have taken the total KKM/D6 charge to be 1. When this charge is

n the decoupling limit discussed in appendix A gives an AdS3×S3/Zn space. Nevertheless,

since the CFT phase we found exists in the standard unquotiented orbifold theory, we are

only interested in asymptotically AdS3×S3 solutions so we restrict to n = n1 + n2 = 1.

The smoothness condition (3.29) insures that a certain center is smooth in all duality

frame. Nevertheless, in the D1-D5-P duality frame in which we are working it is also

possible to have smooth centers that correspond in the IIA frame not to fluxed D6 branes

but to fluxed D4 branes that have a nonzero k3. These are the supertubes dual to the

maximally spinning phase, and can be thought of as coming from (3.30) by taking the

limit α → 0 keeping αp3 fixed (note that this limit is rather formal, because we take α to

22If there is a singularity at r = r2 this is usually associated with a microscopic horizon and subleading

entropy so we can re-apply the entropy maximization argument above including subleading corrections.
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be an integer). When the smooth center is a supertube, the KKM charge of the first center

is one.

3.2.2 Spectral Flow in the Bulk

While our analysis of the last subsection has reduced the problem to considering all two-

center configurations with one smooth center, this is still a rather daunting problem. On

the other hand these solutions enjoy a great deal of symmetry arising from (3.14)–(3.15)

and we can use this to simplify our analysis.

From (3.15) we see that a general γ-flow modifies the asymptotics and may not preserve

an asymptotically AdS3×S3 form of the metric. Recall that the latter requires that only

m0 and l03 are non-vanishing and that they satisfy (3.22). Moreover, as mentioned above,

we want to keep the total D6-charge equal to one.

Let us see how these constraints restrict the transformations we can perform. First

since gauge transformations (gI -flows) preserve the solution we are free to perform them

with impunity. On the other hand, a general γI -flow modifies V in a way dependent on

all the other harmonics, and hence will generically modify the asymptotics. Since we are

interested in keeping the AdS3 × S3 asymptotics, it is not hard to see from (3.30) that

we can only use a γ-flow with a nonzero γ3. In the IIB duality frame we are in, this is a

geometrized component of the U -duality group, and is the bulk dual to spectral flow in the

CFT [51].

To ensure that γ3 does not modify V , we first have to use our gauge-freedom to set

K3 to vanish asymptotically. This is simply accomplished by g3 = −k3−p3α. We are then

free to flow by γ3 and find this affects the solution asymptotically as follows:

Z̃1 ∼ Z1, Z̃2 ∼ Z2, (3.31)

Z̃3 ∼ Z3 − 2γ3µ+ (γ3)
2Z1Z2 (3.32)

µ̃ ∼ µ− γ3Z1Z2 (3.33)

with ∼ meaning that the leading asymptotic terms (as well as the subleading term in Z3)

Recalling (3.23) and comparing this with (2.4) we see the above maps to spectral flow in

the CFT by η = ∓γ3 for JL = ±JL. As we will fix conventions such that JL = JL this

gives η = −γ3.

3.2.3 Spectral Flowing to BMPV plus Supertube

We will now take advantage of the above transformations to flow arbitrary charges of the

form (3.30) to a more tractable form. We first spectral flow using the following transfor-

mations

g3 = −k3 − p3α followed by η = −γ3 = − 1

k3 + p3α− p3
. (3.34)

This has the effect of removing the D6 charge from Γ2 and turning the latter into a super-

tube. After this Γ1 still generically has non-vanishing D4 charges but we can use a gauge

transformation (which has no effect on the CFT quantum numbers) to set k′I (these flowed

charges are generally inequivalent to those of (3.30)) to zero via

(g1, g2, g3) = (−k′1,−k′2,−k′3). (3.35)
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The resultant charge vectors after these transformations are

Γbmpv = {1, {0, 0, 0} , {Q1, Q2, Q3} ,m} ,
Γtube =

{

0, {0, 0, d} , {q1, q2, 0} ,
q1q2
d

}

,

h = {0, {0, 0, 0}, {0, 0, 1},−d} .

(3.36)

The relation between these charges and those of (3.30) can be found in appendix B. As

indicated in the labeling in (3.36), the first center is nothing but a BMPV black hole while

the second is a maximally spinning supertube. As we explain below we have chosen this

choice of spectral flow to simplify our analysis.

One may wonder if a spectral flow by a fractional flow parameter (3.34) is allowed.

Actually, the spectral flow is a transformation which maps a legitimate configuration into

another legitimate configuration in both supergravity and the CFT, and is defined in

principle for any flow parameter. Therefore, such flows are indeed allowed.

It is true that on the CFT side the flow parameter must be integer quantized if one

wants to map a state in a sector to another state in the same sector with the same pe-

riodicity of fermions. Non-integral spectral flows, on the other hand, change the fermion

periodicity both in the boundary and bulk. However, they also modify the VEV of the

asymptotic gauge field in a compensating way so that the bulk geometry remains regular in

a suitable sense; e.g., supersymmetry stays preserved due to the modified VEV of the gauge

field (see [38] and references therein for more details). By assumption our solution (3.30)

is dual to the original D1-D5 CFT which is in the Ramond sector. After flowing by η

units the solution (3.36) will not be in the Ramond sector if η is non-integral but this is of

no consequence as we ultimately flow this solution back by −η units once we have found

the maximal entropy configuration. Thus our final configuration will once more be in the

Ramond sector (in fact we will see in our analysis that the entropy-maximizing value of η

turns out to be integral so such concerns are moot).

The astute reader may also notice that the spectral flowed charges (3.36), whose ex-

plicit expressions can be found in appendix B, are not integers in general and wonder if

they are allowed. However, note that we initially started with integral charges (3.30) and

thus a manifestly regular geometry. Spectral flow merely gives different frames to look at

the same physical situation, and hence a regular configuration is mapped into a regular

configuration again, no matter how it may look. In the present case, the fractional charges

are allowed because of the gauge field VEV mentioned above, which modifies the charge

quantization. This point is perhaps easier to understand in the IIB frame (3.18), where the

spectral flow transformation is nothing but a coordinate change of the ψ-z torus [51]. A

fractional flow mixes ψ and z in a non-standard way such that they are not independently

periodic. However, a coordinate transformation does not change the physical torus, which

remains regular. The fractional charges just reflect the non-standard periodicity of the

torus coordinates and pose no problem at all.
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Figure 11. We want to maximize the bulk entropy with charges given in (3.30) with respect to

parameters (collectively denoted by ξ) describing the distribution of charges between the centers;

this procedure is described by the top horizontal arrow, and is quite non-trivial. Alternatively we

can spectral flow and gauge transform to the BMPV plus tube configuration with charges given in

(3.36) (left vertical arrow) and then maximize the entropy (lower horizontal arrow). We can then

spectral flow the configuration back (right vertical arrow) to get the required maximum entropy

solution dual to the CFT.

3.3 The BMPV plus Supertube System

Thus far we have argued that it is possible to use the bulk analog of spectral flow (combined

with gauge transformations that do not affect the CFT) to transform a two-center solution

where one center carries no entropy and the other has an arbitrary set of charges to a BMPV

black hole surrounded by a supertube (3.36). The spectral flows and gauge transformations

do not alter the entropy of the bulk configuration, and the particular γ3 spectral flow

also leaves the smooth center smooth (although it may change it from a D6 center to a

supertube). On the other hand the charges (3.36) are rather simple and maximizing the

entropy of the total system with fixed CFT charges is relatively straightforward. This

process is described in figure 11.

The reason to take this somewhat indirect approach is that it is rather non-trivial to

maximize S(Γ1) (with Γ1 arbitrary) with respect to fixed CFT charges while making sure

that the bulk solution stays regular and free of CTC’s. On the other hand, it is very easy

to understand the origin of CTC’s in the BMPV+supertube system (they appear when the

charge of the supertube and those of the BMPV black hole are opposite, or when either

object has too much angular momentum) and hence it is much more straightforward to

maximize S(Γbmpv) and to relate the CFT charges to the parameters appearing in (3.36).
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In fact the relation is simply given by

N1 = Q1 + q1, N5 = Q2 + q2, N ′
p = Q3

J ′
L = dN ′

P +
q1q2
d

+m, JR =
q1q2
d

− dN ′
P (3.37)

r12 =
q1q2
d2

−N ′
P =

JR
d
.

Note that the N ′
P that enters in the formula for the inter-center separation r12 is always

positive, so the radius always becomes small when the magnitude of N ′
P grows. This reflects

the fact that a supertube near a black hole can be merged into the black hole when the

horizon radius of the latter becomes large enough [53–55].

Thus we can immediately fix the QI and consider the qI as parameters. We simplify

the analysis by assuming N1 = N5 and take q1 = q2 = q. This reduces our parameter space

by one dimension and corresponds physically to restricting our attention to a system with

an equal number of N1 and N5 branes.

Note that we have used the CFT charges N ′
P and J ′

L above, as these are related by

spectral flow to the enigmatic phase discussed in section 2.2.3 (the other charges do not

flow). A very useful constraint coming from the CFT is eq. (2.13) which holds only for

η = 0 (but can be flowed to any frame). In terms of the bulk charges it is

|JL| − |JR| = 2Np (3.38)

where we use the unflowed Np and JL. Recall that we can fix conventions so that JL > 0,

but once such conventions are chosen we still need to check the sign of JR. It follows from
JR = d r12 that the sign of JR is the same as that of d, so we cannot fix the sign of JR,
as defined in (3.37), as this would over-constrain the bulk charges. However, as mentioned

above, we do have the freedom to choose the axis along which we measure JR at infinity

so we can always choose an axis such that the latter is positive23 giving JR = ±JR with

the ± corresponding to the sign of d. Thus in the bulk we have

J ′
L = dN ′

P +
q2

d
+m, JR =

{

q2

d − dN ′
P (d > 0)

dN ′
P − q2

d (d < 0)
, (3.39)

JL − JR = 2NP . (3.40)

Hence we need to consider separately the supertubes with d < 0 and d > 0. Let us also

recall that the spectral-flowed charges are

J ′
L = JL + 2ηN, N ′

p = Np + ηJL + η2N. (3.41)

3.3.1 Spectral Window

Let us examine the configuration above and attempt to constrain it as best we can by the

various no-CTC conditions. We first note that if ZI = 0 for any I then the condition (3.13)

23Equivalently we can always flip the orientations of the centers in the bulk so that 〈Γ1,Γ2〉 > 0 by

interchanging Γ1 ↔ Γ2.
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is violated and we generate CTC’s. This necessarily happens if q and Q have different

signs since then Z1 and Z2 will become zero at some point (this argument is insensitive to

having N1 = N5). Thus we must have

0 ≤ q < N5 =
√
N. (3.42)

Likewise, positivity of r12 requires q2 ≥ d2N ′
p, and hence

d2(Np + ηJL + η2N) ≤ q2 ≤ N (3.43)

and we recall from the CFT discussion that we are interested in the range of charges

2Np ≤ JL ≤ N +Np. (3.44)

From the condition d2N ′
P < N it is not hard to see that the spectral flow parameter, η, is

constrained to be between 0 and −1. As noted before η need not be integral so in principle

any value −1 ≤ η ≤ 0 is allowed but it is possible to check, numerically, that the entropy is

always maximized for η = 0,−1 so from now on we will allow only these two possibilities.

Let us review this logic. In section 3.2.3 we showed that an arbitrary two-center

configuration with one smooth center can be flowed to a BMPV plus a supertube. By

construction this flow does not change the character of either center (the black hole remains

a black hole or a black ring, and the smooth D6 center remains a smooth D6 center or is

transformed into a smooth “supertube” center). In particular, the value of the black hole

or black ring entropy remains the same, although its dependence on the charges changes.

Since it is always possible to flow to a BMPV plus supertube, there exists some value

of η which flows the putative bulk dual of the CFT phase to a supertube plus BMPV

configuration. We analyze the CFT constraints on the charges in the flowed frame as a

function of η and find they can only be satisfied for −1 ≤ η ≤ 0. A further numerical scan

shows that the entropy is always maximized on the boundaries of this region (η = 0,−1).

Since, by assumption, we started with a well-defined two-center configuration and spectral

flow does not generate CTCs this shows that the BMPV plus supertube configuration must

correspond to a spectral flow of η = 0 or η = −1 of the bulk configuration maximizing the

entropy.

Note this argument did not involve any sort of entropy maximization over the set of all

two-center solutions, which is notoriously difficult because of the absence of intuition about

the relation between the charges of the centers and the appearance of CTC’s. Rather, we

maximize the entropy of a BMPV black hole surrounded by a supertube (where it is well-

understood where CTC’s come from) and use the charge relations given in section 2.2.3 to

argue that the only possible dual bulk configuration can be a BMPV plus supertube, or its

spectral flow by η = −1.

3.3.2 Entropy Maximization of a BMPV Black Hole Surrounded by a Super-

tube

The entropy of this system, comes from the BMPV center, and is

S(Γ1) = 2π
√

D(Γ1) , (3.45)
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where

D(Γ1) = (
√
N − q)2N ′

p −
m2

4
. (3.46)

It is clear that the entropy is maximized by minimizing q and m. These can be expressed

in terms of the original CFT charges via

q2 = d2(r12 +Np + ηJL + η2N)

= d(±JR + d(Np + ηJL + η2N)),

m = J ′
L ∓ JR − 2dN ′

p

(3.47)

where the ± sign in the second lines corresponds to the cases d > 0 and d < 0, respectively,

(and likewise the ∓ in the third line) as follows from eq. (3.39). To facilitate the analysis

let us simplify our notation and use variables JL = jN and Np = pN with 2p ≤ j ≤ 1 + p

(and p > 0). We also use JR = JL − 2NP to arrive at

q2 = Nd(±(j − 2p) + d(p+ ηj + η2)),

m = N((1∓ 1)j ± 2p+ 2η − 2d(p+ ηj + η2).
(3.48)

It is not hard to see that q2 is monotonic in |d| in the regime 2p ≤ j ≤ 1 + p for any η

while for m2 this also happens for η = 0,−1. Thus it is always entropically favorable to

take |d| = 1.

Let us combine these constraints to compute D(Γ1) in terms of the CFT parameters.

We can restrict the four cases η = 0,−1 and d = ±1 and we find the two dominant

combinations

Da = N2
(

1−
√

j − p
)2
p, (η = 0, d = 1)

Db = N2
(

1−
√

1− p
)2

(1 + p− j), (η = −1, d = −1)

(3.49)

The cross-over between the two entropies seems to occur at j = 1 and this will be borne

out from the numerical evaluations below.

Although Da and Db are positive and real for p ≤ j ≤ 1 + p (or 0 ≤ j ≤ 1 + p for Db)

this is misleading as we know the relation JL − JR = 2Np restricts JL from below. In the

bulk this relation simply follows from r12 = JR = JL − 2NP . Thus these configurations

exist only for j > 2p.

Let us consider the new maximal-entropy configurations we have found. For j < 1

the maximal entropy bulk configuration has η = 0 and is thus a BMPV plus supertube

(as we did not have to flow). The charges for this configuration after maximization are

found to be

Γbmpv = {1, {0, 0, 0}, {
√
N −

√

JL −Np,
√
N −

√

JL −Np, Np}, 0}, (3.50)

Γtube = {0, {0, 0, 1}, {
√

JL −Np,
√

JL −Np, 0}, JL −Np}. (3.51)

For j > 1 the maximal entropy phase corresponds to a configuration which must be flowed

by η = −1 to give a BMPV plus tube.
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Recall that spectral flow is accomplished by a γ-transformation, but only after a g-

transformation whose coefficient is fixed by the constraint that the total D6 charge after

the flow be equal to 1 (3.34):

g3 = −d followed by γ3 = −1. (3.52)

The resulting solution is a black ring in a background with non-trivial Wilson lines,24 which

we can undo by a further g-transformation:

{g1, g2, g3} = {−q,−q, 1} . (3.53)

The final solution is thus an asymptotically AdS3 × S3 black ring:

Γ1 = {0, {
√
N −

√

N −Np,
√
N −

√

N −Np, 1},
{
√

N −Np,
√

N −Np, 2
√

N −Np(
√
N −

√

N −Np)}, JL − 2Np}
Γ2 = {1, {0, 0, 0}, {0, 0, 0}, 0} .

Hence the cross-over between Da and Db is the cross-over between a solution describing a

BMPV black hole surrounded by a supertube and a solution describing a black ring, and

from now on we will refer to Da and Db as Dtube and DBR. Thus, the entropy of the

two-center configurations is

Stube = 2π
√

Dtube, Dtube = N2
(

1−
√

j − p
)2
p, (3.54)

SBR = 2π
√

DBR, DBR = N2
(

1−
√

1− p
)2

(1 + p− j). (3.55)

3.3.3 New Phases in Supergravity

We have now established that there exist two maximal entropy configurations (with cross-

over at j = 1) that have the same quantum numbers as the new CFT phase. Unfortunately

neither of these phases has the same entropy as the CFT but interestingly they are restricted

to the same regime of validity as the enigmatic CFT phase, namely 2p ≤ j ≤ 1+ p. As the

bulk entropy is lower than that of the CFT it seems, as expected, that unprotected states

are lifting as we go to strong coupling. Surprisingly, however, our results suggest that not

all states lift. The new phases we find in the bulk indicate that many states that do not

contribute to the elliptic genus in fact do not lift at strong coupling. Furthermore, those

are not just a small subset of the original states: the entropy of the bulk objects has the

same growth with the charges as the entropy of the CFT. As mentioned before, this might

be the consequence of some, as yet undiscovered, index that captures some fraction of the

entropy of the enigmatic CFT phase.

In figure 12, we plot the entropy for these two-center phases, as well as that of the

single-center BMPV black hole and the CFT phase to see how they compare. We plot

the entropies versus j, for specific fixed values of p, namely p = 0.2 (left column) and

p = 0.9 (right column). First, from the p = 0.2 graphs, we see that, for j < 1, Dtube

dominates over DBR while, for j > 1, DBR dominates over Dtube. On the j = 1 line,

24These Wilson lines correspond in four dimensions to Abelian flux on the D6 center
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p = 0.2 p = 0.9

p = 0.2 p = 0.9

p = 0.2 p = 0.9

Figure 12. Plots of the various entropies. The new phases are in green (dashed), SBR = 2πN(1−√
1− p)

√
1 + p− j, and brown/yellow (solid), Stube = 2πN(1 − √

j − p)
√
p. For comparison we

plot, in blue (dotted), the CFT entropy, SCFT = 2πN
√

p(1 + p− j), and, in purple (dot-dashed),

the entropy of a single-center BMPV black hole with the same charges, SBMPV = 2πN
√

p− j2/4.

the two entropies are degenerate, Dtube = DBR, although the actual configurations remain

different. However, because these phases exist only for j > 2p, if p is too large, including

p = 0.9, the BMPV+supertube (or “BMPV+tube”) phase ceases to exist in the allowed

range of j and only the black ring phase exists.
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Figure 13. The bulk phase diagram. In the light blue region, the single-center BMPV black hole

is dominant. In the pink and yellow regions the new phase dominates, either as a BMPV black hole

surrounded by a supertube for JL < N (pink), or as a black ring for JL > N (yellow). Below the

thin dashed black line and above the dotted red curve, the BMPV phase and the new phase coexist

but the BMPV phase is dominant. In the narrow region between the dotted red curve and dashed

blue curve, the two phases coexist and the new phase is dominant.

Next, we can ask how do the two-center entropiesDtube andDBR compare withDBMPV,

the entropy of the single-center BMPV phase? For j > 2
√
p, which corresponds to the

region below the BMPV bound p = j2/4, the BMPV phase does not exist and the two-

center phases are the dominant phases (although only one of them is dominant depending

on j ≶ 1 as we just discussed). On the other hand, for j < 2
√
p, which corresponds to

the region above the BMPV bound, the two-center phase dominates over the single-center

BMPV phase in a certain small range of j below the bound j = 2
√
p. Again, depending on

the value of j, the dominant phase is either the BMPV+tube phase (j < 1) or the black

ring phase (j > 1).

All these can be seen much more clearly in figure 13, where we present the phase

diagram of the bulk D1-D5 system on the JL-Np plane (we have already presented a

schematic version of this in figure 2b). Notably, even above the BMPV cosmic censorship

bound Np = J2
L/4N , there is a region in which the new phase dominates over the single-

center BMPV black hole. Also, the new phase is dominant in the whole region below the

cosmic censorship bound where the phase of a gas of supergravity particles is subdominant.

4 Discussion

In this paper, we have carefully investigated the supersymmetric phases of the D1-D5

system, and found new phases on both sides of the AdS/CFT correspondence. The new

phase in the CFT is always entropically dominant over the BMPV phase in the whole
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parameter region where the two phases coexist, whereas the new phase in supergravity is

dominant over the BMPV phase in a much smaller region. Below the cosmic censorship

bound where the BMPV phase ceases to exist, the new phases are dominant both in the

CFT as well as in supergravity.

In the CFT we found that the angular momenta of the phase that dominates the

entropy satisfy the relation JR = JL − 2Np (eq. (2.13)). We then looked for bulk configu-

rations that satisfy the same relation (eq. (3.39)) and obtained the phase diagram shown

in figure 13.

If one relaxes this constraint, and looks instead for bulk configurations that domi-

nate the entropy for fixed charges and JL, one can find bulk two-center configurations

(BMPV+tube and pure black ring) that have JR < JL − 2Np and have slightly larger

entropy than the ones having JR = JL − 2Np. However, the difference in entropy is small

and the phase diagram is virtually unchanged from figure 13.25 To avoid this unnecessary

complication, we imposed the constraint JR = JL − 2Np in the bulk.

Thus we have found that near the boundary of the region where single-center black

holes exist (the cosmic censorship bound) there appear new phases with more entropy than

the single-center black hole, which can be thought of as the result of shedding of hair, or

moulting, of the single center black hole. Moreover, we have seen that in different regimes

of parameter space the BMPV black hole has different moulting patterns: for small JL it

sheds all its angular momentum in supertube hair, while for large JL it sheds a hair of

Gibbons-Hawking or Taub-NUT charge and becomes a black ring.

The phenomenon we find has also been seen for D4-D0 (equivalently M5-P) black holes

in N = 2 four-dimensional supergravity [11]. In both situations the new phase dominates

only very close to the cosmic censorship boundary. Note that in an asymptotically-flat

setting one can map the D6-D2-D0 black hole whose moulting we described here to the

D4-D2-D0 black hole whose moulting was described in [11] via a combination of spectral

flows, gauge transformations and 4D S-duality (equivalent to six T -dualities) [56]. This

map however interchanges harmonic functions, and generically may not map asymptotically

AdS3×S3 black holes to asymptotically AdS3×S2 black holes. Thus it is not immediately

obvious whether the AdS moulting pattern we found here maps to the AdS moulting

pattern found in [11].

4.1 A Supersymmetric Gregory-Laflamme Instability

By an analysis of the geometry similar to the one done in [57], one can show that the bulk

“instability” that drives the BMPV black hole to a two-center solution can be thought

of as a “supersymmetric version” of a Gregory-Laflamme instability [58]. Indeed, all the

solutions we study are supersymmetric and therefore stable. However, if we make them

infinitesimally non-extremal one naturally expects them to decay into more entropic con-

figurations; thus a near-extremal BMPV black hole would decay into a near-extremal black

ring or a near-extremal BMPV+supertube geometry, and would localize on the S2 base as

25A peculiar thing however is that, sufficiently inside the BMPV parabola (sufficiently away from the

cosmic censorship bound), the most entropic two-center configuration has JR = 0 and r12 = 0. This is a

collapsing limit of the two-center solution and is singular. The entropy in this limit is smaller than that of

the single-center BMPV black hole, and therefore such a configuration is never realized thermodynamically.

So, this does not affect the phase diagram at all.
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we explain below. This is very similar to the localization instability found for the original

entropy enigma [10, 11], in which a supersymmetric black hole localizes in S2.

In the six-dimensional AdS3×S3 geometry, the original BMPV black hole is filling the

entire S3 and is pointlike in the two-dimensional spatial part of AdS3, which can locally

be thought of as R
2. Thus the horizon topology is S3 × S1, where S1 is coming from

fattening a pointlike object in R
2. On the other hand, the new two-center solution made

of a BMPV black hole and a supertube can be thought of as a black hole which wraps the

S1 Hopf fiber of the S3 and is pointlike in the S2 Hopf base. It is again pointlike in the

two-dimensional spatial part of the AdS3. Now the horizon topology is S1 × S3, where S3

is coming from fattening a point in the spatial part of S2×AdS3, which is locally R
4. Note

that the tube uplifts to a smooth point on the S3 in six dimensions (see [57], page 8).26

So, in this process, the black hole localizes in the base S2.

It is interesting to ask why this localization occurs only in the base S2 of the S3 but

not in the fiber S1, no matter how small the charges JL, Np are. We can argue that a

complete localization in S3 is entropically disfavorable, using an argument similar to that

of [8]: Consider a small black hole localized in S3. For this hole to carry JL, it must be

zipping around the equator of the S3. Let the velocity and the rest mass of the small black

hole be v and m, respectively. Its angular momentum JL is 27 JL ∼ Rmvγ, while its energy

is E ∼ mγ, where R is the radius of S3 and γ = (1 − v2)−1/2. If we assume that this

configuration is BPS, then Np = ER ∼ Rmγ. By solving these relations for m and v, we

findm = (N2
p−J2

L)
1/2/R, v = JL/Np. The black hole massm and entropy Ssmall are related

to rH bym ∼ r3H/G6 and Ssmall ∼ r4H/G6 where G6 is the six-dimensional Newton constant.

Therefore, we find Ssmall ∼ (N2
p − J2

L)
2/3G

1/3
6 R−4/3 = N(p2 − j2)2/3. Here, we used the

relation R ∼ G
1/4
6 N1/4 which follows from the AdS3/CFT2 dictionary. On the other hand,

the entropy of the BMPV black hole is SBMPV ∼ (NNp − J2
L/4)

1/2 = N(p− j2/4)1/2. Let

us consider the scaling limit N → ∞ with p = Np/N and j = JL/N fixed, as we have

been assuming throughout the paper. We take p, j ≪ 1 so that the radius of the BMPV

black hole becomes much smaller than that of S3.28 In order for the small black hole to

exist, the reality of Ssmall requires that p ∼ jα with α ≥ 1 as we consider p, j ≪ 1. In

this case, Ssmall ∼ Np4/3 ≪ SBMPV ∼ Np1/2 for p ≪ 1. Namely, in the limit in which the

26Some more details on the topology of the spacetime, along the lines of [57], are as follows: the five-

dimensional spatial part of the spacetime can be thought of as S1 fibered over an R
4 base. The supertube

worldvolume is a circle in R
4, at which the S1 shrinks (because of the KKM dipole charge). If one considers

a disk D2 whose boundary is this circle, the S1 fiber over the D2 gives the S3. The BMPV black hole sits

at the center of this D2. Because the S1 fiber does not shrink there, the BMPV black hole wraps the fiber

S1 although it is pointlike in the base.
27Let the S3 be given by

∑4
i=1(x

i)2 = R2. For example, let the hole be rotating along the circle in

the 1-2 plane, i.e., (x1)2 + (x2)2 = R2, x3 = x4 = 0. Then the angular momentum Jab = xapb − xbpa
is given by J12 = −J21 = Rmvγ with all other components vanishing. If we define J i

L, J
i
R, i = 1, 2, 3 by

J i
L,R = J i4

± , J ij
± = (1/2)(J̃ ij ± J ij), J̃ ij = (1/2)ǫijklJkl, then we find J3

L = −J3
R = −Rmvγ/2. According

to our definition, JL = 2J3
L = Rmvγ.

28From SBMPV ∼ rBMPV/G3, R ∼ G
1/4
6 N1/4 and G3 ∼ G6/R

3, it is easy to see that rBMPV/R ∼
SBMPV/N ∼

√

p− j2/4. So, p, j ≪ 1 is sufficient for the radius of the BMPV black hole, rBMPV, to become

much smaller than R.
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radius of the BMPV black hole becomes much smaller than that of S3, a full localization

in S3 is entropically unfavorable and does not happen. What happens instead is a partial

localization in the S2 base, as we have demonstrated by constructing the explicit solution.

4.2 The New Phases in the Canonical Ensemble

Thus far, we considered the new phases in the microcanonical ensemble, fixing the conserved

chargesNp and JL. It is interesting to investigate the role of the new phases in the canonical

ensemble.29 Let us flow to the NS sector where the transition from a gas of gravitons to

the BMPV phase can be regarded as a Hawking-Page phase transition. In the NS sector,

the entropy formulas for the BMPV phase and the new phase of the CFT are

SNS
BMPV(L0) = 2π

√

N

(

L0 −
N

4

)

, SNS
new(L0) = 2πL0 , (4.1)

where we have set JL = 0 for simplicity and have used the relation (2.3) to eliminate Np

and write the equations in terms of L0. If we introduce the left-moving temperature T ,

from the thermodynamical relation ∂S/∂L0 = 1/T ≡ β, we obtain

TBMPV =
1

π

√

L0

N
− 1

4
, Tnew =

1

2π
. (4.2)

Now let us go to the canonical ensemble by defining the free energy30

F = L0 −
N

4
− TS. (4.3)

We find

FBMPV(T ) = −π2NT 2, Fnew = −N
4
. (4.4)

Note that Fnew is defined only for T = 1/2π.

On the other hand, the thermodynamic quantities for “thermal” 31 AdS are given by:

FtAdS = −N
4
, StAdS = 0, (L0)tAdS = 0. (4.5)

These simply come from e−βF = TrtAdS[e
−β(L0−N/4)] ∼ eβN/4 because only the NS ground

state contributes.

We have plotted F (T ) for the three phases in figure 14(a). As we increase T from

T = 0, we have a Hawking-Page transition at T = Tc = 1/2π where the thermal AdS

phase gives way to the BMPV phase. Exactly at T = Tc, we can have the new phase as

well. The meaning of this is clearer in the graph of T (L0) shown in figure 14(b). As we

increase T from T = 0, we first go along the vertical axis in the thermal AdS phase. Then

29We thank S. Minwalla for suggesting we consider the canonical ensemble.
30Because of the shift by −c/24 = −N/4, the relation between the partition function and the free energy

is TrNS,BPS[e
−β(L0−c/24)] = e−βF .

31We have a non-vanishing left-moving temperature but the right-moving temperature vanishes. There-

fore the physical temperature vanishes.
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(a) F versus T (b) T versus L0

Figure 14. Thermodynamic quantities for the CFT phases in the canonical ensemble.

at T = Tc = 1/2π, we now move horizontally along the “new phase” line, and then finally

reach the BMPV phase. During this horizontal motion, the temperature stays constant

and the energy put into the system is used to convert the short strings into the long one.

So, in the canonical ensemble, the new phase can be interpreted as the coexisting phase of

the thermal AdS (short strings) and BMPV (long string) phases, much as the coexisting

phase of ice and water. The difference is that ice and water coexist in the real space while

the two CFT phases coexist in the space of effective strings.

We can repeat the same analysis for the bulk configuration. The entropy formu-

lae (3.54), spectral-flowed to the NS sector, become

SNSnew,bulk(L0) = 2π
(√

N −
√

N − L0

)

√

L0. (4.6)

Note that the spectral-flowed expression for the BMPV+supertube and the black ring

configurations is the same for JL = 0. The temperature for this phase is

Tnew,bulk =

√

L0(N − L0)

2π(L0 − N
2 ) + π

√

N(N − L0)
(4.7)

and the free energy is

Fnew,bulk =
L0

√
N√

N + 2
√
N − L0

− N

4
. (4.8)

We have plotted the F (T ) for the BMPV, thermal AdS and the new bulk phase in

figure 15(a). We have a Hawking-Page transition at T = Tc = 1/2π where the thermal AdS

gives way to the BMPV phase. The new phase exist for 1√
2π
< T <∞. In figure 15(b) we

plot T (L0) for the three phases. The temperature of the new phase is infinite for L0 = 0

and monotonically goes down to 1√
2π

at L0 =
N
2 . From both these graphs we see that the

new bulk phase has a negative specific heat and thus cannot be realized in the canonical

ensemble even though it exists in the microcanonical ensemble.

Including JL 6= 0 does not change the above qualitative picture.

4.3 Future Directions

Since our motivation has been mostly AdS/CFT-based we have focused here on a particular

“moulting” of the BMPV black hole in an attempt to reproduce the CFT phase transition.
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(a) F versus T (b) T versus L0

Figure 15. Thermodynamic quantities for the CFT phases in the canonical ensemble.

It is interesting to note however that an asymptotically-flat BMPV black hole can have

more moulting patterns than an asymptotically-AdS one: in asymptotically-flat solutions

the D1, D5, and P charges are on equal footing, and a black hole can shed either D1-D5,

D1-P or D5-P supertube hair. Nevertheless, since the AdS3 × S3 near-horizon breaks the

interchange symmetry between the three charges, only the D1-D5 supertube hair remains

in this limit; the other supertubes are too large and do not fit inside this near-horizon

region [53].

In [24] a proposal for a CFT ensemble dual to a bulk black ring was put forward, which,

modulo one phenomenological assumption about the length of the short strings, reproduces

the seven-parameter entropy of the ring. The phases we discuss in this paper have short

strings that have the smallest-allowed size consistent with the charges, and hence, almost

by construction, have more entropy than the black ring. However, as one increases the

effective coupling to move from the orbifold point to the regime where supergravity is

valid, one expects the phase we constructed to lose a finite fraction of its entropy and end

up describing the black ring.

There are three possible scenarios how this might happen: it may be possible that all

states that have short strings of length smaller than that of [24] get uplifted, and only the

states with short strings of the length of [24] or bigger survive. The second possibility is

that the number of short strings stays constant as one increases the coupling, but their

length changes; since the total length is constant this reduces the entropy carried by the

long string, to the black ring value. The third possibility is that the phenomenological

length of [24] represents the average of the lengths of the short string lengths, and that

as one increases the coupling, the kind of small strings that the long string sheds changes,

such that the final average is the phenomenological length.

We would also like to note that our computation of the microscopic partition function

based on [41] can be straightforwardly generalized to include JR dependence, and it would

be interesting to see if this can be related to the recent results of [59] (see also [60, 61]).

In this paper, we have made a thorough search for the bulk configuration that maxi-

mizes the entropy. However, it is logically possible, although we find it unlikely, that there

are some bulk configurations that have larger entropy than the ones we have been able
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to find. Indeed, we made an assumption that the relevant two-center configurations have

one smooth center, and the stability argument that we present in appendix C indicates

that such a configuration is indeed a local maximum of the entropy; however, we could

not establish that this is a global maximum, and thus it is formally possible that there are

some other two-center configurations with two horizons and more entropy.

Second, we imposed a U(1) × U(1) symmetry in the bulk because the entropy-

maximizing configuration in the CFT lives in a single JR multiplet. However, as we ob-

served above, the value of JR that maximizes the bulk entropy is not precisely the same

as the one maximizing the CFT entropy, and it is logically possible that the JR multiplet

matching does not hold; as such the maximum-entropy configuration in the bulk might

break this symmetry and have more than two centers, or have some inhomogeneities.32

These unlikely possibilities aside, our calculation shows that there exist many CFT

states that are not protected by the elliptic genus, but that nevertheless do not lift at

strong coupling. Furthermore, the entropy of these states is not subleading, but is of

the same order of, and sometimes dominant over the entropy of the black hole. This

fact either indicates the existence of a new index, or hints at a previously unthought-of

dynamical mechanism that prevents the lifting of such a large number of states. We find

both possibilities extremely interesting.
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A The Decoupling Limit

In this appendix we examine the charges and the harmonic functions that give multicenter

solutions that in the IIB frame (3.18) have AdS3×S3/Zn asymptotics.33 We take the

following total charge

Γ = {n, kI , lI ,m} (A.1)

32Much like it happens in some holographic systems where spatially inhomogeneous configurations can

be thermodynamically dominant over homogeneous ones (for an incomplete list of recent work, see [62–69]).
33A discussion of this can also be found in [53] and appendix B of [49].
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and set all the constants in the harmonic functions to zero except m0 and l03. We will

generally only be concerned with the asymptotic charges but we will also need dipole

charges to compute JR asymptotically so we consider a two-center configuration with the

following harmonic functions

V =
n1
r1

+
n2
r2
, KI =

kI1
r1

+
kI2
r2
, (A.2)

LI =
l1I
r1

+
l2I
r2

+ l03δI3, M̃ =
m1

r1
+
m2

r2
+m0 (A.3)

with the first center at the origin, r1 = |~r|, and the second center at ~a, r2 = |~r − ~a|. Note

that this asymptotic analysis carries over straightforwardly to more centers.

We first expand the functions appearing in the metric to leading order

Z1 =
1

r

(

l1 +
k2k3

n

)

=:
N1

r
, Z2 =

1

r

(

l2 +
k1k3

n

)

=:
N5

r
(A.4)

Z3 = l03 +
1

r

(

L3 +
k1k2
n

)

=: l03 +
Np

r
, (A.5)

from which we read off the leading terms in the IIB metric

ds2IIB ∼ − r

Z3L
(dt+ k)2 +

Z3r

L
(dz +A3)2 +

nL

r2
dr2 + L

(

ndΩ2
2 +

σ2

n

)

(A.6)

with L =
√
N1N5 and Ω2 the standard S2 metric. To connect with the standard D1-D5-P

metric we consider a total charge (1, 0, lI , 0) implying that k = 0 and A3 = −Z−1
3 (dt+ k)

and then redefine

z = x5 + τ, 2t− l03z = τ − x5, r = ρ2 (A.7)

putting the metric in the form

ds2IIB
4

∼ ρ2

L

[

−dτ2 + dx25 +
Np

ρ2
(dx5 + dτ)2

]

+ L
dρ2

ρ2
+
L

4

(

dΩ2
2 + σ2

)

(A.8)

where the Hopf metric on S3 now properly normalized. This justifies our identification of

N1, N5 and NP in (A.4)-(A.5).

To determine JL and JR we should reduce the metric (A.6) on S3 and read off the

corresponding v.e.v. from the normalizable mode of the relevant gauge fields. A simpler,

albeit less direct, way to identify the charges is as follows. The relationship between µ

and JL (see eqn (3.23)) can be fixed by considering a single-center BMPV and relating its

horizon entropy (in terms of harmonic functions) to what we expect from the CFT. This

identification and normalization also follows from the behavior of µ under bulk spectral

flow. In the M-theory frame (reduced to five dimensions) µ or JL is related to the angular

momentum along the ψ circle and the other angular momentum comes from the R
3 base

of the solutions (the asymptotic value of ω). Thus we can identify JR as the asymptotic

value of ω and the normalization is fixed with respect to the normalization of JL (as we

take both charges to be integral rather than half-integral).

– 41 –



J
H
E
P
0
3
(
2
0
1
2
)
0
9
4

B Spectral Flow

We provide, for reference, the charges of the “BMPV plus supertube” solution in terms of

the charges of the original, generic, configuration from whence they were spectral flowed

Γ1 =

{

1, {0, 0, 0},

{

k2k3 − l1(α− 1), k1k3 − l2(α− 1),

p3 (k2 (k1p3 + l2)− (α− 1) (l3p3 +m))− k3 (l3p3 +m) + l1 (k1p3 + l2)

(k3 + p3(α− 1)) 2

}

,

1

k3 + p3(α− 1)

[

−k3 (k1 (2k2p3 + l1) + k2l2 + (α− 1) (m− l3p3))

+ (α− 1) (p3 (k2l2 +m(−α) +m) + l1 (k1p3 + 2l2)) + k23l3

]

}

,

Γ2 =

{

0,
{

0, 0,−α (k3 + p3(α− 1))
}

,

{

α (p3 (k2 + p2(α− 1)) + k3p2 + l1) , α (p3 (k1 + p1(α− 1)) + k3p1 + l2) , 0
}

,

− α (p3 (k1 + p1(α− 1)) + k3p1 + l2) (p3 (k2 + p2(α− 1)) + k3p2 + l1)

k3 + p3(α− 1)

}

,

h = {0, {0, 0, 0}, {0, 0, 1}, α (k3 + p3(α− 1))} .
(B.1)

Note, as emphasized in section 3.2.3, the fact that some entries are fractional poses no

physical problem, because it is merely a result of the fractional spectral flow (3.34) that

we chose to do.

C Stability analysis of two-center solution with one smooth center

In [11] a two-center solution was shown to be entropically dominant over a single center

solution and it was assumed that keeping one center smooth would maximize the two-

center entropy. Here we demonstrate the validity of this assumption locally in the space of

charges for the two-center solutions considered in this paper, where one center is a BMPV

black hole and the other is a smooth supertube. As described in the bulk of the paper we

can use spectral flow to map this to a generic configuration with one smooth center, so the

analysis performed here is broadly applicable.

Let us consider a general deformation of the BMPV+supertube system and focus on

configurations and variations with equal D1 and D5 charges (N1 = N5) and equal d1 and
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d5 dipole charges:

Γbmpv = {1, {0, 0, 0} , {Q,Q,Q3} ,m} ,
Γtube =

{

0, {d, d, d3} , {q, q, q3} ,m′} ,

h = {0, {0, 0, 0}, {0, 0, 1},−d3} .
(C.1)

The equality of the charges is a simplifying assumption but should not be essential. Varia-

tions of the BMPV D4 charges can be undone by gauge transformation so the form above

captures the most general (continuous) deformation. Note also that the D6 charges must

remain integer in order for the background to be regular.

We parameterize the charges as

q = a0 + a1λ+ a2λ
2 + . . . , q3 = b1λ+ b2λ

2 + . . . (C.2)

d = c1λ+ c2λ
2 + . . . , d3 = 1 (C.3)

where we have also imposed the integrality of d3 (which corresponds to a KK dipole charge

and must be integer if the background is to be regular). The other charges can be fixed

in terms of the CFT charges JL, JR, N and Np and the above. We take the CFT charges

to be fixed but unconstrained (we do impose the unitarity bound JL < N + Np but this

should hold for any state).

Note that a0 is related to m′ at lowest order via m′ = a20 + O(λ) so that to zeroth

order in λ the second center is indeed a supertube. The no-CTC condition implies the qi
and Qi must have the same sign (to leading order) so b1 ≥ 0 and 0 ≤ a0 ≤ N1.

To get more constraints we consider the entropies of the two centers. To leading order

the square of the entropy, D(Γtube), (see eqn (3.11)), is never positive

D(Γtube) ∼ −1

4
(b1 − 2a0c1)

2λ2 + . . . (C.4)

so we must take c1 = b1/2a0. Imposing this allows us to simplify the next non-vanishing

term

D(Γtube) ∼
b21 (2a0 (a0a1 + b1)− b1N1)

4a30
λ3 + . . . (C.5)

whose positivity requires

2xa20 + 2a0 −N1 ≥ 0 (C.6)

where we have defined x ≡ a1/b1.

Next we turn to the square of the BMPV entropy, D(ΓBMPV). To zeroth order this is

a quartic polynomial in a0

1

4

(

−a40 + 2a20JL + 2a20NP − 8a0N1NP + 2JLNP − J2
L −N2

P + 4N2
1NP

)

(C.7)

while its leading deformation is O(λ) and has the following form

b1 (a0 −N1) (a0 (2xNP +N1)− JL + 2NP )

a0
λ . (C.8)
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In order for the deformation to increase the entropy the expression (C.8) must be positive

(the entropy contribution from the second, deformed tube, center is subleading) which

gives

2a0xNP + a0N1 − JL + 2NP ≤ 0 . (C.9)

Combining this with (C.6) yields upper and lower bounds on x which are only compatible

when

a20N1 − a0JL +N1NP ≤ 0 . (C.10)

Thus a0 is constrained to lie between the roots of this polynomial.

On the other hand (C.7) is a quartic polynomial in a0 which must be positive for the

leading entropy to be real. One then checks that positivity of (C.7) is not compatible

with (C.10). It then follows that any deformation that increases the entropy also generates

a CTC so the BMPV plus tube center is (locally) entropically stable.

D Why the “enigmatic states” do not contribute to the elliptic genus

From a numerical analysis in section 2.3 we saw that the enigmatic phase does not con-

tribute to the elliptic genus while the BMPV phase does. In this appendix we will give an

explanation of why the particular states we consider, namely the ones of the form of a long

string with excitations on it plus multiple short strings of length one, do not contribute to

the elliptic genus.

For the enigmatic phase, we determined the number of short strings, l, by maximizing

the entropy; this number l is given in eq. (2.10). However, other states with different

number of short strings, call it l+ δl, also contribute to the elliptic genus. Here, let us sum

up the contributions from the states with different values of δl, and show that the sum

vanishes, because of the alternating signs for bosonic and fermionic states.

If we change the number of length-one short strings by δl, the total JL remains the

same but JR = JL − 2Np + δl and it can be seen that the entropy is

Sδl = Sl −
δl2

8Sl
. (D.1)

This approximation is valid for δl ≪ Sl. For the enigmatic phase Sl ∼ N and this bound

is δl ≪ N . Thus the elliptic genus (2.22) is given approximately by

χEG;enigma ≈ eSenigma

∞
∑

δl=−∞
(−1)δle

− δl2

8Senigma

= eSenigmaϑ4

(

0, e
− 1

4Senigma

)

(D.2)

where we have ignored the error in summing from −∞ to ∞ instead of −N to N as it goes

to zero when N → ∞.

We can now use modular transformation properties of theta functions to write this as

χEG;enigma ≈ eSenigma
√

8πSenigma ϑ2

(

0, e−16π2Senigma

)

, (D.3)

and it is easy to see that this vanishes for Senigma → ∞. Thus these states do not contribute

to the elliptic genus.
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E Units and conventions

Newton’s constant in D spacetime dimensions is related to the D-dimensional Planck

length as

GD = (2π)D−3(ℓD)
D−2 . (E.1)

The tensions of the extended objects in string and M-theory are:

TF1 =
1

2πl2s
, TDp =

1

gs(2π)p(ls)p+1
, TNS5 =

1

g2s(2π)
5(ls)6

,

TM2 =
1

(2π)2(l11)3
, TM5 =

1

(2π)5(l11)6
, (E.2)

where gs is the string coupling constant and ls is the string length. The eleven-dimensional

Planck length is related to these as

l11 = g1/3s ls . (E.3)

In a compactification of M-theory along a circle of radius R11 we get

R11 = gsls . (E.4)

In a T 6 compactification of M-theory, where the radius of each torus circle is R5, . . . , R10,

the five-dimensional Planck length is related to the eleven-dimensional Planck length as

G5 =
G11

vol(T 6)
=

G11

(2π)6R5R6R7R8R9R10
=
π

4

(l11)
9

R5R6R7R8R9R10
. (E.5)

The relation between the integer charges counting the number of M2 and M5 branes,

NI and nI , and the physical charges of the five-dimensional solution, QI and qI , upon

compactification of M-theory on T 6 is

Q1 =
(l11)

6

R7R8R9R10
N1 , Q2 =

(l11)
6

R5R6R9R10
N2 , Q3 =

(l11)
6

R5R6R7R8
N3 ,

q1 =
(l11)

3

R5R6
n1 , q2 =

(l11)
3

R7R8
n2 , q3 =

(l11)
3

R9R10
n3 . (E.6)

In this paper we choose a system of units where all the three T 2 are of equal volume and

we have

R5R6 = R7R8 = R9R10 =
1

2
l311 =

1

2
gsl

3
s (E.7)

Note that this is a numerical identity. With this choice we have

G5 = 2π, QI = 4NI , qI = 2nI . (E.8)
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