112 research outputs found

    Plasma Wakefield Acceleration with a Modulated Proton Bunch

    Get PDF
    The plasma wakefield amplitudes which could be achieved via the modulation of a long proton bunch are investigated. We find that in the limit of long bunches compared to the plasma wavelength, the strength of the accelerating fields is directly proportional to the number of particles in the drive bunch and inversely proportional to the square of the transverse bunch size. The scaling laws were tested and verified in detailed simulations using parameters of existing proton accelerators, and large electric fields were achieved, reaching 1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found in this case.Comment: 9 pages, 7 figure

    The energy dependence of ptp_t angular correlations inferred from mean-ptp_{t} fluctuation scale dependence in heavy ion collisions at the SPS and RHIC

    Get PDF
    We present the first study of the energy dependence of ptp_t angular correlations inferred from event-wise mean transverse momentum fluctuations in heavy ion collisions. We compare our large-acceptance measurements at CM energies $\sqrt{s_{NN}} =$ 19.6, 62.4, 130 and 200 GeV to SPS measurements at 12.3 and 17.3 GeV. $p_t$ angular correlation structure suggests that the principal source of $p_t$ correlations and fluctuations is minijets (minimum-bias parton fragments). We observe a dramatic increase in correlations and fluctuations from SPS to RHIC energies, increasing linearly with $\ln \sqrt{s_{NN}}$ from the onset of observable jet-related fluctuations near 10 GeV.Comment: 10 pages, 4 figure

    Partonic flow and ϕ\phi-meson production in Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the ϕ\phi-meson elliptic flow (v2(pT)v_{2}(p_{T})) and high statistics pTp_{T} distributions for different centralities from sNN\sqrt{s_{NN}} = 200 GeV Au+Au collisions at RHIC. In minimum bias collisions the v2v_{2} of the ϕ\phi meson is consistent with the trend observed for mesons. The ratio of the yields of the Ω\Omega to those of the ϕ\phi as a function of transverse momentum is consistent with a model based on the recombination of thermal ss quarks up to pT4p_{T}\sim 4 GeV/cc, but disagrees at higher momenta. The nuclear modification factor (RCPR_{CP}) of ϕ\phi follows the trend observed in the KS0K^{0}_{S} mesons rather than in Λ\Lambda baryons, supporting baryon-meson scaling. Since ϕ\phi-mesons are made via coalescence of seemingly thermalized ss quarks in central Au+Au collisions, the observations imply hot and dense matter with partonic collectivity has been formed at RHIC.Comment: 6 pages, 4 figures, submit to PR

    Galaxy Clusters Associated with Short GRBs. II. Predictions for the Rate of Short GRBs in Field and Cluster Early-Type Galaxies

    Get PDF
    We determine the relative rates of short GRBs in cluster and field early-type galaxies as a function of the age probability distribution of their progenitors, P(\tau) \propto \tau^n. This analysis takes advantage of the difference in the growth of stellar mass in clusters and in the field, which arises from the combined effects of the galaxy stellar mass function, the early-type fraction, and the dependence of star formation history on mass and environment. This approach complements the use of the early- to late-type host galaxy ratio, with the added benefit that the star formation histories of early-type galaxies are simpler than those of late-type galaxies, and any systematic differences between progenitors in early- and late-type galaxies are removed. We find that the ratio varies from R(cluster)/R(field) ~ 0.5 for n = -2 to ~ 3 for n = 2. Current observations indicate a ratio of about 2, corresponding to n ~ 0 - 1. This is similar to the value inferred from the ratio of short GRBs in early- and late-type hosts, but it differs from the value of n ~ -1 for NS binaries in the Milky Way. We stress that this general approach can be easily modified with improved knowledge of the effects of environment and mass on the build-up of stellar mass, as well as the effect of globular clusters on the short GRB rate. It can also be used to assess the age distribution of Type Ia supernova progenitors.Comment: ApJ accepted versio

    Neutral kaon interferometry in Au+Au collisions at √s\u3csub\u3eNN\u3c/sub\u3e = 200 GeV

    Get PDF
    We present the first statistically meaningful results from two-Ks0 interferometry in heavy-ion collisions at √sNN = 200 GeV. A model that takes the effect of the strong interaction into account has been used to fit the measured correlation function. The effects of single and coupled channels were explored. At the mean transverse mass ⟨mT⟩ = 1.07 GeV, we obtain the values R = 4.09±0.46(stat)±0.31(sys) fm and λ=0.92±0.23(stat)±0.13(sys), where R and λ are the invariant radius and chaoticity parameters, respectively. The results are qualitatively consistent with mT systematics established with pions in a scenario characterized by a strong collective flow

    Minijet deformation and charge-independent angular correlations on momentum subspace (η,ϕ) in Au-Au collisions at √sNN=130 GeV

    Get PDF
    Measurements of two-particle correlations on angular difference variables η1−η2 (pseudorapidity) and ϕ1−ϕ2 (azimuth) are presented for all primary charged hadrons with transverse momentum 0.15≤pt≤2 GeV/c and |η|≤1.3 from Au-Au collisions at √sNN=130 GeV. Large-amplitude correlations are observed over a broad range in relative angles where distinct structures appear on the same-side and away-side (i.e., relative azimuth less than π/2 or greater than π/2). The principal correlation structures include that associated with elliptic flow plus a strong, same-side peak. It is hypothesized that the latter results from correlated hadrons associated with semi-hard parton scattering in the early stage of the heavy-ion collision which produces a jet-like correlation peak at small relative angles. The width of the jet-like peak on η1−η2 increases by a factor 2.3 from peripheral to central collisions, suggesting strong coupling of semi-hard scattered partons to a longitudinally-expanding medium. The new methods of jet analysis introduced here provide access to scattered partons at low transverse momentum well below the kinematic range where perturbative quantum chromodynamics and standard fragmentation models are applicable

    Strange Baryon Resonance Production in √s\u3csub\u3eNN\u3c/sub\u3e = 200 GeV p+p and Au+Au Collisions

    Get PDF
    We report the measurements of Σ(1385) and Λ(1520) production in p+p and Au+Au collisions at √sNN=200  GeV from the STAR Collaboration. The yields and the pT spectra are presented and discussed in terms of chemical and thermal freeze-out conditions and compared to model predictions. Thermal and microscopic models do not adequately describe the yields of all the resonances produced in central Au+Au collisions. Our results indicate that there may be a time span between chemical and thermal freeze-out during which elastic hadronic interactions occur

    Direct Observation of Dijets in Central Au+Au Collisions at √sNN=200  GeV

    Get PDF
    The STAR Collaboration at the Relativistic Heavy Ion Collider reports measurements of azimuthal correlations of high transverse momentum (pT) charged hadrons in Au+Au collisions at higher pT than reported previously. As pT is increased, a narrow, back-to-back peak emerges above the decreasing background, providing a clear dijet signal for all collision centralities studied. Using these correlations, we perform a systematic study of dijet production and suppression in nuclear collisions, providing new constraints on the mechanisms underlying partonic energy loss in dense matter

    Transverse-momentum p\u3csub\u3et\u3c/sub\u3e correlations on (η,ϕ) from mean-p\u3csub\u3et\u3c/sub\u3e fluctuations in Au–Au collisions at √s\u3csub\u3eNN\u3c/sub\u3e = 200 GeV

    Get PDF
    We present first measurements of the pseudorapidity and azimuth (η, ϕ) binsize dependence of event-wise mean transverse-momentum ⟨pt⟩ fluctuations for Au–Au collisions at √sNN = 200 GeV. We invert that dependence to obtain pt autocorrelations on differences (η∆, ϕ∆) interpreted to represent velocity/temperature distributions on (η, ϕ). The general form of the autocorrelations suggests that the basic correlation mechanism is parton fragmentation. The autocorrelations vary rapidly with collision centrality, which suggests that fragmentation is strongly modified by a dissipative medium in the more central Au–Au collisions relative to peripheral or p–p collisions

    Multiplicity dependence of inclusive p\u3csub\u3et\u3c/sub\u3e spectra from p−p collisions at √s = 200 GeV

    Get PDF
    We report measurements of transverse momentum pt spectra for ten event multiplicity classes of p−pcollisions at √s=200  GeV. By analyzing the multiplicity dependence we find that the spectrum shape can be decomposed into a part with amplitude proportional to multiplicity and described by a Lévy distribution on transverse mass mt, and a part with amplitude proportional to multiplicity squared and described by a Gaussian distribution on transverse rapidity yt. The functional forms of the two parts are nearly independent of event multiplicity. The two parts can be identified with the soft and hard components of a two-component model of p−p collisions. This analysis then provides the first isolation of the hard component of the pt spectrum as a distribution of simple form on yt
    corecore