175 research outputs found

    Hydrogen turbulent nonpremixed flames blended with spray or prevapourised biofuels

    Get PDF
    Available online 6 April 2023The low radiant intensity of hydrogen flames may be enhanced by adding biofuels with a high sooting propensity. This paper reports the effect of biofuel concentration and phase on the combustion characteristics of turbulent nonpremixed hydrogen-based flames. The 0.2 and 1 mol% vapourised/spray biofuel surrogates blended flames exhibit limited soot loading, except for 1 mol% spray toluene and anisole blends where soot starts to form. Spray additives benefit the formation of soot by creating localised fuel-rich conditions. Blending 3.5 and 4 mol% vapourised toluene attains a sooting flame and significantly enhances the luminosity and radiant fraction. The global NOx emissions increase with prevapourised/spray biofuel surrogates due to the enhanced NO formation via thermal and prompt routes. Reducing the hydrogen concentration from 9:1 to 7:3 in H2/N2 (by mole) leads to large increases in luminosity and radiant fraction by 34 times and 135%, respectively, and a reduction in NOx emissions by 68%.Yilong Yin, Paul R. Medwell, Bassam B. Dall

    Numerical study of multilayer adsorption on fractal surfaces

    Full text link
    We report a numerical study of van der Waals adsoprtion and capillary condensation effects on self-similar fractal surfaces. An assembly of uncoupled spherical pores with a power-law distributin of radii is used to model fractal surfaces with adjustable dimensions. We find that the commonly used fractal Frankel-Halsey-Hill equation systematically fails to give the correct dimension due to crossover effects, consistent with the findings of recent experiments. The effects of pore coupling and curvature dependent surface tension were also studied.Comment: 11 pages, 3 figure

    ERP and four dimensions of absorptive capacity: lessons from a developing country

    Get PDF
    Enterprise resource planning systems can grant crucial strategic, operational and information-based benefits to adopting firms when implemented successfully. However, a failed implementation can often result in financial losses rather than profits. Until now, the research on the failures and successes were focused on implementations in large manufacturing and service organizations firms located in western countries, particularly in USA. Nevertheless, IT has gained intense diffusion to developing countries through declining hardware costs and increasing benefits that merits attention as much as developed countries. The aim of this study is to examine the implications of knowledge transfer in a developing country, Turkey, as a paradigm in the knowledge society with a focus on the implementation activities that foster successful installations. We suggest that absorptive capacity is an important characteristic of a firm that explains the success level of such a knowledge transfer.Publicad

    Implementing, monitoring and measuring a programme of relationship marketing

    Get PDF
    This single, embedded case study examined the marketing activities of Flensted Catering A/S, a Danish food company. The case is the first one in a series of case studies constituting a larger research project with the overall objective of understanding how to implement relationship marketing, how to monitor the outputs and how to measure the returns. In 1996, the company embarked on a three-phase programme directed at building relations with customers. As a prelude to the implementation, Flensted Catering A/S conducted focus groups and issued questionnaires to determine customer perceptions of how the company could meliorate its performance. Subsequently, the Danish firm established project teams, instituted customer-focused staff training and sought to improve communications with customers. Following the implementation, the monitoring revealed that Flensted Catering A/S was rated as a better supplier by 43 per cent of its customers and that customer retention had risen to 94 per cen

    Hypoxic Pulmonary Vasoconstriction in Humans:Tale or Myth

    Get PDF
    Hypoxic Pulmonary vasoconstriction (HPV) describes the physiological adaptive process of lungs to preserves systemic oxygenation. It has clinical implications in the development of pulmonary hypertension which impacts on outcomes of patients undergoing cardiothoracic surgery. This review examines both acute and chronic hypoxic vasoconstriction focusing on the distinct clinical implications and highlights the role of calcium and mitochondria in acute versus the role of reactive oxygen species and Rho GTPases in chronic HPV. Furthermore it identifies gaps of knowledge and need for further research in humans to clearly define this phenomenon and the underlying mechanism

    Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria

    Get PDF
    Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions. Funding: Bill & Melinda Gates Foundation

    Radiating biofuel-blended turbulent nonpremixed hydrogen flames on a coaxial spray burner

    Get PDF
    Available online 5 March 2024The low radiant intensity and luminosity of hydrogen flames can be enhanced by the addition of a small portion of sooting biofuels. To achieve higher effectiveness, the impact of blending turbulent nonpremixed hydrogen flames with liquid biofuels, by gas-assist atomisation, is investigated and compared with the introduction methods of prevapourisation and ultrasonic spray. The flame appearance, luminosity, radiant fraction, centreline temperature, and the near-field spray characteristics of four biofuel surrogates (eucalyptol, D-limonene, guaiacol, and anisole) blended into hydrogen flames are measured experimentally. Radiating biofuel/hydrogen flames are achieved on a coaxial needle spray burner by the addition of 0.1–0.3 mol% biofuel surrogates. Compared with the unblended hydrogen flame, the luminosity and radiant fraction are enhanced by 30%–500% and 2%–15%, respectively, with the addition of biofuel surrogates. The results show that adding the biofuel surrogates by gas-assist atomisation is more effective than prevapourisation and ultrasonic atomisation in luminosity and radiant fraction enhancement. It is found that the local fuel-rich conditions, which are beneficial for soot formation, are further facilitated by the larger droplets and spray objects generated by gas-assist atomisation. Of the additives tested, anisole is the most effective for luminosity and radiant fraction enhancement of a hydrogen flame while exhibiting the largest flame temperature drop due to the enthalpy of vapourisation and the radiative loss from the promoted soot formation. The viscosity and surface tension greatly influence the spray characteristics which in turn impacts the flame characteristics. Guaiacol, the representative of lignin, appears to have the lowest effectiveness in radiant fraction enhancement due to the presence of a hydroxy group, a higher bond dissociation enthalpy, and a coarser spray ascribed to higher viscosity and surface tension.Yilong Yin, Paul R. Medwell, Bassam B. Dall

    A Comparative Study of Damage Performance of the Kill Element from Different Materials

    No full text
    For the design of the novel anti-explosive reactive armor tandem warhead, a prerequisite is to improve the reaming capacity and the damage performance of the preceding kill element so that the channel is ready for the subsequent penetration by the kill element. Meanwhile, the selection of appropriate shaped charge liner material in the warhead could help enhance the integrated penetration performance of the kill element. Traditional shaped-charge liners made of metals or metal alloys with high density, high sound speed and good ductility are capable of forming a good-shape and stable jet kill element, which also demonstrate the advantages of large impact and high-performance penetration depth against the target. When the traditional liners are used to impact reactive armor, however, the weak reaming capacity and easily-induced charge explosions prevent the subsequent penetration of kill element into the main armor. In addition, the jet kill element formed by shaped-charge liners with low-density materials generally displays a low penetration depth against the reactive armor. In the present study, filled modifiedpolytetrafluoroethylene (PTFE) was selected as the material ofthe shaped charge liner. The damage performances on the armor from the kill elements formed with metallic or nonmetallic liners were evaluated and compared based on the numerical simulations and experimental studies. The results showed that the head diameter of the PTFE-Cu jet kill element was increased by 11.1% as compared to the PTFE jet kill element, and the former was twice as large as that of the copper jet kill element. The stronger reaming capacity against the target was essential for the opening of a channel for the tandem warhead’s subsequent element. In addition, when compared to the PTFE jet kill element, the penetration depth and the jet hole diameter of the PTFE-Cu one were increased by 45.8 and 12.6%, respectively, demonstrating the high damage potential of the PTFE-Cu jet kill element. Therefore, the present comparative analysis of the kill element damage performance with different materials under high-speed impact loading has provided a reference for the research and the design of the anti-armor tandem warhead with large penetration apertures and high damage performance
    corecore