17,662 research outputs found
High efficiency coherent optical memory with warm rubidium vapour
By harnessing aspects of quantum mechanics, communication and information
processing could be radically transformed. Promising forms of quantum
information technology include optical quantum cryptographic systems and
computing using photons for quantum logic operations. As with current
information processing systems, some form of memory will be required. Quantum
repeaters, which are required for long distance quantum key distribution,
require optical memory as do deterministic logic gates for optical quantum
computing. In this paper we present results from a coherent optical memory
based on warm rubidium vapour and show 87% efficient recall of light pulses,
the highest efficiency measured to date for any coherent optical memory. We
also show storage recall of up to 20 pulses from our system. These results show
that simple warm atomic vapour systems have clear potential as a platform for
quantum memory
An AC Stark Gradient Echo Memory in Cold Atoms
The burgeoning fields of quantum computing and quantum key distribution have
created a demand for a quantum memory. The gradient echo memory scheme is a
quantum memory candidate for light storage that can boast efficiencies
approaching unity, as well as the flexibility to work with either two or three
level atoms. The key to this scheme is the frequency gradient that is placed
across the memory. Currently the three level implementation uses a Zeeman
gradient and warm atoms. In this paper we model a new gradient creation
mechanism - the ac Stark effect - to provide an improvement in the flexibility
of gradient creation and field switching times. We propose this scheme in
concert with a move to cold atoms (~1 mK). These temperatures would increase
the storage times possible, and the small ensemble volumes would enable large
ac Stark shifts with reasonable laser power. We find that memory bandwidths on
the order of MHz can be produced with experimentally achievable laser powers
and trapping volumes, with high precision in gradient creation and switching
times on the order of nanoseconds possible. By looking at the different
decoherence mechanisms present in this system we determine that coherence times
on the order of 10s of milliseconds are possible, as are delay-bandwidth
products of approximately 50 and efficiencies over 90%
Storage and Manipulation of Light Using a Raman Gradient Echo Process
The Gradient Echo Memory (GEM) scheme has potential to be a suitable protocol
for storage and retrieval of optical quantum information. In this paper, we
review the properties of the -GEM method that stores information in
the ground states of three-level atomic ensembles via Raman coupling. The
scheme is versatile in that it can store and re-sequence multiple pulses of
light. To date, this scheme has been implemented using warm rubidium gas cells.
There are different phenomena that can influence the performance of these
atomic systems. We investigate the impact of atomic motion and four-wave mixing
and present experiments that show how parasitic four-wave mixing can be
mitigated. We also use the memory to demonstrate preservation of pulse shape
and the backward retrieval of pulses.Comment: 26 pages, 13 figure
Analysis and control of bifurcation and chaos in averaged queue length in TCP/RED model
This paper studies the bifurcation and chaos phenomena in averaged queue length in a
developed Transmission Control Protocol (TCP) model with Random Early Detection
(RED) mechanism. Bifurcation and chaos phenomena are nonlinear behaviour in network
systems that lead to degradation of the network performance. The TCP/RED model used
is a model validated previously. In our study, only the average queue size k q
−
is
considered, and the results are based on analytical model rather than actual measurements.
The instabilities in the model are studied numerically using the conventional nonlinear
bifurcation analysis. Extending from this bifurcation analysis, a modified RED algorithm
is derived to prevent the observed bifurcation and chaos regardless of the selected
parameters. Our modification is for the simple scenario of a single RED router carrying
only TCP traffic. The algorithm neither compromises the throughput nor the average
queuing delay of the system
Time- and frequency-domain polariton interference
We present experimental observations of interference between an atomic spin
coherence and an optical field in a {\Lambda}-type gradient echo memory. The
interference is mediated by a strong classical field that couples a weak probe
field to the atomic coherence through a resonant Raman transition. Interference
can be observed between a prepared spin coherence and another propagating
optical field, or between multiple {\Lambda} transitions driving a single spin
coherence. In principle, the interference in each scheme can yield a near unity
visibility.Comment: 11 pages, 5 figure
Helicobacter pylori, peptic ulcer and gastric cancer in China.
link_to_subscribed_fulltex
Biased EPR entanglement and its application to teleportation
We consider pure continuous variable entanglement with non-equal correlations
between orthogonal quadratures. We introduce a simple protocol which equates
these correlations and in the process transforms the entanglement onto a state
with the minimum allowed number of photons. As an example we show that our
protocol transforms, through unitary local operations, a single squeezed beam
split on a beam splitter into the same entanglement that is produced when two
squeezed beams are mixed orthogonally. We demonstrate that this technique can
in principle facilitate perfect teleportation utilising only one squeezed beam.Comment: 8 pages, 5 figure
Upper airway change after oral appliance in obstructive sleep apnoea patients - difference exist in good and poor responders
published_or_final_versio
A Scalable, Self-Analyzing Digital Locking System for use on Quantum Optics Experiments
Digital control of optics experiments has many advantages over analog control
systems, specifically in terms of scalability, cost, flexibility, and the
integration of system information into one location. We present a digital
control system, freely available for download online, specifically designed for
quantum optics experiments that allows for automatic and sequential re-locking
of optical components. We show how the inbuilt locking analysis tools,
including a white-noise network analyzer, can be used to help optimize
individual locks, and verify the long term stability of the digital system.
Finally, we present an example of the benefits of digital locking for quantum
optics by applying the code to a specific experiment used to characterize
optical Schrodinger cat states.Comment: 7 pages, 5 figure
- …