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We consider pure continuous variable entanglement with non-equal correlations between orthogonal
quadratures. We introduce a simple protocol which equates these correlations and in the process
transforms the entanglement onto a state with the minimum allowed number of photons. As an
example we show that our protocol transforms, through unitary local operations, a single squeezed
beam split on a beam splitter into the same entanglement that is produced when two squeezed
beams are mixed orthogonally. We demonstrate that this technique can in principle facilitate perfect
teleportation utilising only one squeezed beam.

I. INTRODUCTION

Entanglement is a key ingredient in many quantum
communication tools [1]. It has been studied in di-
chotomic regimes such as photon-counting [2] and elec-
tron spin [3] and also in continuous variable regimes [4,5].
Recently many of the quantum information protocols and
tools developed dichotomically have been generalised to
the continuous variable regime [6–10] and new exper-
imental measures of continuous variable entanglement
have also been proposed [11–13].
The most studied and generated form of entangle-

ment in continuous variable quantum optics is Einstein-
Podolsky-Rosen (EPR) entanglement [5,14]. EPR en-
tanglement is characterised by quantum correlations be-
tween conjugate quadrature amplitudes of two light
beams. For example there may be quantum correlations
between both the amplitude and the phase quadratures
of the two beams. Usually EPR entanglement in which
the correlations between conjugate quadratures are of
equal strength is discussed. We will refer to this as un-

biased EPR entanglement. There is no reason to restrict
ourselves to this case however, and recently van Loock
and Braunstein [15] examined entanglement with biased
correlations. They evaluated the entanglement in terms
of continuous variable teleportation of coherent states,
studying two party and multi-party protocols.
In this paper we examine this type of entanglement in

a more general way. Using a standard measure of EPR
entanglement and introducing a new measure based on
the number of photons present in a state, we show in
what sense unbiased EPR entanglement is maximal. A
key issue in our treatment is that of resources. That
is, the number of photons used to produce a particular
level of entanglement. Although an integral part of dis-
crete variable discussions of quantum information, the
question of resources is not always explicit in continuous
variable treatments. Here we define maximal EPR states
as those that use the minimum resources (photons) nec-

essary to produce a particular degree of correlation.
We then discuss how it is possible to move between

biased and unbiased states using only local operations.
Using the example of continuous variable teleportation
we show that an improvement in efficacy occurs with our
protocol. In general unbiased entanglement provides op-
timum results, however we also show that there are some
special situations where biased entanglement is optimal.
Protocols for manipulating entanglement are common

in discrete variable quantum information. Perhaps most
useful is distillation, or as it is sometimes called, concen-
tration of entanglement [16,17]. Distillation is a process
involving only local operations and classical communica-
tion which takes some number of weakly entangled par-
ticles to a smaller number of more entangled particles.
The total entanglement cannot be increased by such a
process, only the entanglement per particle. Continuous
variable distillation protocols [10,18] take some number
of weakly entangled modes and produce a smaller num-
ber of more entangled modes. In contrast the operations
desribed in this paper involve single mode manipulations.
The paper is arranged in the following way: Section II

reviews the techniques for characterising and producing
EPR entanglement and introduces EPR symmetrisation
and the concept of non-maximal EPR states for continu-
ous variables. In Section III our protocol to redistribute
the quantum correlations is introduced and in Section IV
we consider its application to teleportation as an exam-
ple. The protocol is generalised to tri-partite entangle-
ment in Section V and we conclude in Section VI.

II. CONTINUOUS VARIABLE ENTANGLEMENT

A. Characterisation

An optical beam can be expressed as a mean unchang-
ing field plus a fluctuation term [19].
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Â(t) = 〈Â〉+ δÂ(t) = 〈Â〉+ 1

2
(δX̂(t)+ + i δX̂(t)−) (1)

Here Â(t) is a field annihilation operator and 〈Â〉 is its

expectation value. δÂ(t) contains all of the fluctuations of
the operator and can be split into two orthogonal hermi-
tian operators, quadrature phase δX̂(t)− and quadrature

amplitude δX̂(t)+. The superscripts − and + distinguish
the phase and amplitude quadratures, respectively.
Taking the Fourier transform of Â(t) produces the fre-

quency domain operator A(Ω) which we denote by re-
moving the hat. The variance of the phase and am-
plitude quadratures of an optical beam are given by
V ± = V ±(Ω) = V (δX±(Ω)) = 〈(δX±(Ω))2〉. Through-
out this paper we will consider sidebands at frequencies
±Ω away from the carrier frequency and henceforth the
frequency Ω will not be shown explicitly. The Heisenberg
uncertainty relationship can then be expressed in terms
of these variances as V +V − ≥ 1.
In this paper the degree of quantum correlation be-

tween a given entangled pair of beams is measured with
the product of conditional variances, V ±

cv , of conjugate
quadratures between the two beams. This measure was
first proposed by Reid and Drummond [5], is easily mea-
sureable, and has been used to characterise entanglement
in a number of experiments [14,20,21]. The conditional
variance measures how well a quadrature amplitude of
one beam can be inferred from a quadrature measure-
ment of the other beam, or in other words it measures
the variance of the noise degrading the otherwise perfect
correlations between the beams. By determining the con-
ditional variances of two conjugate quadratures between
beams, we may demonstrate the EPR-paradox experi-
mentally [14]. This demonstration is a sufficient but not
necessary condition for the states to be entangled (i.e
inseparable). Limiting ourselves to the amplitude and
phase quadratures, the condition for EPR entanglement
becomes

V +
cvV

−
cv < 1 (2)

where the conditional variances are given by V ±
cv =

V ±
b − |〈δX±

b δX
±
a 〉|2/V ±

a [22] and the subscripts a and b
label the two optical beams. V +

cvV
−
cv = 1 defines a hard

boundary below which the state must be entangled, the
closer V +

cvV
−
cv is to 0 the stronger the entanglement. It

is also possible to have rotated EPR correlations such
that the conditional variance between (say) the ampli-
tude of one beam and the phase of the other, and vice
versa obey relations analogous to Eq.(2). We will only
consider non-rotated states here.
A number of measures of entanglement are in use-

age. In particular the Duan criteria [13,23] gives necces-
sary and sufficient conditions for separability of Gaussian
states. We use the EPR condition here because of its
physical significance and links with the efficacy of con-
tinuous variable quantum information protocols [24]. We
mainly restrict ourselves in this paper to pure states and

exclusively to Gaussian states. For pure Gaussian states
the EPR condition is qualitatively equivalent to Duan’s
criteria.

B. Production

Continuous variable entanglement of the EPR type
may be produced by mixing two squeezed beams on a
50/50 beam splitter [25–27]. Squeezed beams are ones
for which V + < 1 < V − or vice versa [19]. Through-
out this paper we denote the input beams to this beam
splitter by the subscripts 1 and 2, and the output beams
by EPR1 and EPR2. For zero phase difference between
the inputs at the beam splitter, the output quadrature
amplitude relations are given by

δX±
EPR1 =

1√
2
(δX±

1 + δX±
2 ) (3)

δX±
EPR2 =

1√
2
(δX±

1 − δX±
2 ) (4)

and the conditional variances between these two outputs
are

V ±
cv =

2V ±
1 V

±
2

V ±
1 + V ±

2

(5)

If both input beams (1 and 2) are pure (minimum uncer-
tainty) states, then

V +
cvV

−
cv =

4

2 + V +
1 V

−
2 + V −

1 V +
2

(6)

Now if both input beams are equally squeezed and the
squeezing is in orthogonal directions (eg V +

1 = V −
2 < 1

or V −
1 = V +

2 < 1) then the output beams will be in the
usual, unbiased, EPR entangled state. If the squeezing is
not equal for the two beams and/or is not on orthogonal
quadratures then biased entanglement will be produced.
An interesting case is when only one input is squeezed
(say V +

1 < 1 < V −
1 and V ±

2 = 1). From equation (6)
we find that V +

cvV
−
cv is still less than 1 and thus the out-

puts are still entangled in this case. In this paper we will
use this entanglement as our example, however the anal-
ysis and techniques we discuss can equally be applied to
general biased entanglement. Clearly, for a fixed amount
of squeezing, two squeezed beams will produce stronger
correlations than one. Figure 1 shows V +

cvV
−
cv for vari-

able squeezing in both cases. As the squeezing strength
increases, the biased and unbiased entanglement both ap-
proach perfect, V +

cvV
−
cv → 0.
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FIG. 1. Entanglement produced with varying degrees of
squeezing, the solid line represents entanglement from two
squeezed beams and the dot-dashed line entanglement from
only one beam.

As well as access to stronger correlations, entangle-
ment from two squeezed beams has another advantage.
Many quantum information protocols require quantum
correlations in two conjugate quadratures, V +

cv , V
−
cv < 1,

which this entanglement naturally provides. Entangle-
ment from only one squeezed beam on the other hand
provides quantum correlations in only one quadrature,
say V +

cv < 1 but necessarily V −
cv > 1. One such example,

is quantum teleportation of a coherent state where per-
fect entanglement from one squeezed beam (V +

cvV
−
cv = 0)

provides a fidelity of only F = 1/
√
2 compared with

F = 1 for perfect unbiased entanglement [15]. In sec-
tion III we will show how perfect teleportation can be
achieved utilising only one squeezed beam but first we
would like to study the difference between biased and
unbiased entanglement in more detail.

C. EPR Symmetrisation

We now use a resource argument to define and quantify
the difference between a maximal EPR state and a non-
maximal EPR. We will identify unbiased entanglement
as maximal.
First let us consider what we mean by “maximal” EPR.

Clearly the maximum EPR state is the one for which
V +
cv = V −

cv = 0. But creating such a state would require
infinite energy, an unphysical limit. Thus the idea of a
maximal EPR state should be considered within some
limit on resources. Let us consider the minimum num-
ber of photons required to achieve a particular value of
V +
cvV

−
cv . We will define a maximal EPR state as one which

achieves this particular value of entanglement with the
minimum photon number. The average photon number
in the sidebands of an optical beam, taken over some
small range of frequencies for which the quadrature vari-
ances are constant, can be related to these variances (in
suitably normalised units) via

n = 〈δÂ†(Ω)δÂ(Ω) + δÂ†(−Ω)δÂ(−Ω)〉

=
1

2
(V +(Ω) + V −(Ω))− 1 (7)

The quadrature variances of the individual EPR beams
can be related to the conditional variances between them
by invoking the uncertainty relations. If it is possible
to infer the value of δX+

EPR1,2 with a variance V +
cv then

the uncertainty relation requires that V +
cvV

−
EPR1,2 ≥ 1.

Similarly if we can infer the value of δX−
EPR1,2 with a

variance V −
cv then the uncertainty relation requires that

V −
cvV

+
EPR1,2 ≥ 1. Thus

V ±
EPR1,2 ≥ 1

V ∓
cv

(8)

For pure-state entanglement expressions (8) are true in
the equality, substituting these equalities into equation
(7) we obtain the average photon number of each of the
EPR beams

nEPR1,2 =
1

2
(
1

V +
cv

+
1

V −
cv

)− 1 (9)

For a given degree of quantum correlation (V +
cvV

−
cv ) the

minimum value of nEPR1,2 is obtained when

V +
cv = V −

cv (10)

and thus when the entanglement is unbiased. Both equa-
tion (10) and the equality of equation (8) are satisfied by
entanglement produced from two minimum uncertainty
equally squeezed beams. This identifies such states as
maximal EPR states. Because for entanglement from
a single squeezed beam V +

cv 6= V −
cv we can immediately

identify it as a non-maximal EPR state.
We describe the maximallity of the EPR entanglement

by λ, the ratio of the minimum number of photons nec-
essary (for that entanglement strength) to the number of
photons present,

λ =
nmaximal

nEPR

(11)

where nEPR is the mean photon number of the EPR state
being analysed and nmaximal is the mean photon number
of the maximal EPR state with the same conditional vari-
ance product. If λ = 1 the state is maximal, if λ < 1 the
state is non-maximal.
The λ parameter also identifies mixed states as non-

maximal. Such states occur when the states used to pro-
duce the entanglement are not minimum uncertainty, or
if the EPR beams suffer loss. For mixed states it is the
equality of equation (8) which will not be satisfied, whilst
the noise degrading the correlations may still be unbiased
(i.e. V +

cv = V −
cv ) . In the following discussion we will not

consider mixed states further.
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III. REDISTRIBUTING THE QUANTUM

CORRELATIONS

We introduce a method to transform pure non-
maximal EPR states into maximal ones. In particular
we will see how biased entanglement can be transformed
into unbiased entanglement using only local unitary oper-
ations. These operations keep the overall degree of quan-
tum correlation (as measured by V +

cvV
−
cv ) constant whilst

increasing λ (equation(11)).

A 1

A
2

AEPR1

AEPR2
OPA

OPA
Apara1

Apara2

FIG. 2. Scheme to redistribute the quantum noise of an
entangled pair.

Let us consider the effect of passing entangled beams
produced from only one squeezed beam through two inde-
pendent degenerate optical parametric amplifiers (OPAs)
as shown in figure 2. In the classical pump limit OPAs
effect a unitary transformation of the field [19]. The ef-
fect of each OPA is to amplify the fluctuations of one of
the input quadratures whilst de-amplifying the fluctua-
tions of the orthogonal quadrature. The quadratures of
amplification and de-amplification are controlled by the
phase difference between the input and the pump field of
the OPA. In our example, the amplitude quadratures of
both beams are amplified. The effect of each OPA on its
respective entangled beam is given by

δX+
para1,2 =

√
G δX+

EPR1,2 (12)

δX−
para1,2 =

1√
G
δX−

EPR1,2 (13)

where the gain G has been chosen identically for both
OPAs and the subscripts para1,2 label each entangled
beam after the optical parametric operations. As the
gain terms from each quadrature cancel on multiplica-
tion, these operations leave V +

cvV
−
cv unchanged. After the

OPAs the entangled quadratures given in equations (3)
and (4) become

δX+
para1 =

√

G

2
(δX+

1 + δX+
2 ) (14)

δX−
para1 =

1√
2G

(δX−
1 + δX−

2 ) (15)

δX+
para2 =

√

G

2
(δX+

1 − δX+
2 ) (16)

δX−
para2 =

1√
2G

(δX−
1 − δX−

2 ) (17)

We have previously stated that entanglement gen-
erated from one squeezed beam has quantum correla-
tions in only one quadrature; two squeezed beams gen-
erate entanglement that has equal but weaker (for the
same V +

cvV
−
cv ) quantum correlations in both. For pure

entanglement from one squeezed beam setting a gain

G =
√

V −
1 (i.e. equal to the standard deviation of the

anti-squeezed quadrature of the squeezed input beam)
spreads the quantum correlations equally over both en-
tangled quadratures. This makes the entanglement un-
biased and in fact indistinguishable from entanglement
generated from two squeezed beams. More generally a
gain of

G =

√

V −
1

V +
2

(18)

will make any pure EPR entanglement unbiased and thus
maximal.
The OPAs are in fact acting as deamplifiers of pho-

ton number in this situation. By choosing the optimum
gains we are able to reduce the photon number in the
beams to the minimum allowed for their particular level
of entanglement and thereby produce maximal entangle-
ment. A physical picture of this process can be obtained
by considering weak squeezed beams. Such beams can
be described approximately in the Schrodinger picture
as superpositions of vacuum and photon pairs: |ψs〉 =
|0〉+ ξ|2〉 with ξ << 1. Mixing two of these beams on a
beamsplitter with the appropriate phase relationship spa-
tially separates the pairs into the individual beams pro-
ducing the maximal entangled state |ψe〉 = |00〉+ ξ|11〉.
On the other hand splitting a single squeezed beam gives
the state |ψes〉 = |00〉+ξ/

√
2(|11〉+1/2(|20〉+ |02〉)). We

see that as well as the maximal component there is also
a component of unseparated pairs. These do not con-
tribute to the correlations. The effect of correctly tuned
OPAs is to act as 2-photon absorbers which locally re-
move the 2-photon components leaving only the maximal
component. A generalization of this argument to higher
photon number orders can be made.
This process is similar to discrete variable concentra-

tion protocols [16] since the entanglement per photon is
increased. Indeed there are strong similarities to the pro-
crustean method of discrete concentration, where unen-
tangled photons are “filtered out” whilst retaining the
entangled ones [28]. However in the discrete case the
photon is the fundamental carrier of the entanglement
whilst in the continuous case it is the field mode which
plays this role. In recognition of this distinction we re-
frain from using concentration to describe the continuous
variable case.
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IV. TELEPORTATION

In general the goal of quantum teleportation is to de-
stroy a quantum state in one system and re-create it
exactly in another. Many theoretical papers have been
published on quantum teleportation [29] and it has been
experimentally realised [27,30,31]. The Heisenberg un-
certainty principle limits the information attainable from
any two observables with a non-zero commutator relation
[32]. Thus the perfect reproduction of an unknown input
state via a direct measurment and recreation scheme is
impossible. However a loophole exists if the sender, Al-
ice, and receiver, Bob, share entanglement. This allows
them to, in principle, teleport the state perfectly. The
uncertainty principle is not violated as neither Alice nor
Bob learn the identity of the teleported state.
Figure 3 shows a typical continuous variable teleporta-

tion experiment with the addition of two local OPAs, one
at Alices detection station and one at Bobs reconstruc-
tion station. The OPAs can conveniently be thought of
as a local resource forming part of the teleportation pro-
tocol. The subscripts OUT and SIG label the the output
and signal beams respectively. AM and PM label the
amplitude and phase modulators respectively used to re-
construct the signal state with unity gain on one of the
entangled beams. The input for the amplitude (phase)
modulator is from an amplitude (phase) detector with
suitably chosen gain.

A
SIG

A 1

A
2

AMPM
AOUT

A EPR1

A
EPR2

OPA

A pa
ra1

OPA
Apara2

A
SIG + A

para1

+

+

A
SIG - A

para1

-

-Alic
e

Bob

FIG. 3. Quantum teleportation with local OPAs.

The overlap integral of the original and teleported state
Wigner functions is a measure of how similar the states
are and is conventionally termed fidelity [33]. Other mea-
sures of teleportation quantify the disturbance (noise)
introduced by the teleporter to an arbitrary teleported
state under various conditions [26]. For ease of com-
parison with Ref. [15] we will use fidelity here and only
consider unity gain (i.e. the teleportation gain has been
chosen such that the size of the coherent displacement of
the state before and after teleportation are equal).

If all noise sources are Gaussian, the fidelity of coherent
state teleportation at unity gain is given by

F =
2

√

(

V +
OUT + 1

) (

V −
OUT + 1

)

(19)

The fidelity equals 1 when the Wigner function of the
output state is a perfect replica of that of the signal state.
The phase and amplitude variance of the output state of
the teleporter shown in figure 3, assuming it functions
perfectly, can be written as

V +
OUT = 2GV +

1 + V +
SIG (20)

V −
OUT =

2

G
V −
2 + V −

SIG (21)

We have assumed that the signal is coherent thus V +
SIG =

V −
SIG = 1. This gives a fidelity of

F =
1

√

V +
1 V

−
2 +GV +

1 + 1
GV

−
2 + 1

(22)

The maximum fidelity Fmax for a given entanglement
strength is obtained when the parametric gain G is cho-
sen as in equation (18) and is given by

Fmax =
1

√

V +
1 V

−
2 + 1

(23)

This upper limit of achievable fidelity is set solely by the
strength of the entanglement and, with appropriate para-
metric gain (dictated by equation (18)), all entanglement
of equal strength (equal V +

cvV
−
cv ) can in theory achieve it.

1. An example: Teleportation utilising biased entanglement

Consider entanglement generated from a single
squeezed beam, for ideal squeezing V +

cvV
−
cv approaches

zero and thus the entanglement becomes perfect. With-
out specific OPA operations however, the maximum
achievable fidelity (given by equation (22) with G =

1,V +
1 = 1, and V −

2 = 0) is 1/
√
2 [15]. After local OPA

operations with G as in equation (18) the maximum fi-
delity (given by equation (23)) is equal to 1. Figure 4
shows the fidelity achieved first by simply using the bi-
ased entanglement and then by beforehand utilising our
protocol to redistribute the quantum correlations.
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FIG. 4. Fidelity of teleportation of a coherent signal; both
before (solid line) and after (dot-dashed line) redistribution
of the entanglements quantum correlations with OPAs.

For reasonably strong squeezing substantial improve-
ments in fidelity can be achieved via local OPA opera-
tions and indeed with just a single squeezed beam the
teleportation can be perfect. In Ref. [15] the coherent
state teleportation fidelity was taken as a measure of the
entanglement. Remembering that entanglement cannot
be increased by local operations, we see that coherent
state fidelity only gives a lower bound to the entangle-
ment strength.

2. Another example: Teleportation of a squeezed state

Here we consider teleportation of a squeezed state with
an arbitrary coherent displacement. That is the orienta-
tion and dimensions of the squeezed ellipse are taken as
constant and known, but the coherent displacement is
unknown. We show that unbiased entanglement is not
optimum in this case.
The fidelity of teleportation of a minimum uncertainty

amplitude squeezed state with arbitrary coherent dis-
placement is given by

F =
1

√

V +
1 V

−
2 +

GV +

1

Vsqz
+

V −

2
Vsqz

G + 1

(24)

where Vsqz is the variance of the squeezed quadrature of
the signal. Here the maximum fidelity is achieved when

G = Vsqz

√

V −
2 /V +

1 and is equal to that given in equation

(23); again F = 0.5 defines the classical limit. If unbi-
ased entanglement is utilised in the teleporter V +

1 = V −
2

and the gain simplifies to G = Vsqz. So we see that to
achieve the maximum fidelity it is now necessary to ap-
ply parametric gain to the entanglement, dependent on
the strength of the signal squeezing. A comparison be-
tween the fidelity of teleportation of a squeezed state with

Vsqz = 0.1, being teleported with entanglement generated
from two equally squeezed beams, with and without OPA
operations is shown in figure 5. Note that for unbiased
entanglement as V +

cvV
−
cv → 1, F → (2 + V −1

sqz + Vsqz)
−1/2

which is less than 0.5 if Vsqz < 1. Thus quantum telepor-
tation of a squeezed state with arbitrary coherent ampli-
tude cannot be achieved with weak unbiased entangle-
ment (see figure 5 for example).
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FIG. 5. Fidelity of teleportation of a squeezed signal
(Vsqz = 0.1); utilising unbiased entanglement both with
(dot-dashed line) and without (solid line) optimising OPA
operations.

This result can be thought of as redistribution of the
quantum noise in such a way as to minimise the signal in-
formation gathered by the amplitude and phase quadra-
ture measurements inside the teleporter. If the signal
is strongly amplitude squeezed then the entanglement
‘noise’ must be increased in the anti-squeezed quadra-
ture to hide its large quantum fluctuations and we can
afford to decrease it in the squeezed quadrature because
the squeezed fluctuations are small.

V. GENERALISATION TO MULTI-PARTITE

ENTANGLEMENT

We will now show that our protocol generalises to
multi-party situations. In particular let us consider the
continuous variable GHZ state [34,15], so-called through
analogy with the dichotomic GHZ state [35]. We can
generalise the bipartite EPR condition to this tri-partite
state by requiring that the amplitude and phase variances
of, say, beam a, conditioned on measurements of beams b
and c, display an apparent violation of the Heisenberg un-
certainty relation. The conditional variance generalised
to the three beam situation is given by

V ±
cv3 = V ±

a − V ±
b |〈δX±

a δX
±
c 〉|2 + V ±

c |〈δX±
a δX

±
b 〉|2

V ±
b V ±

c − |〈δX±
b δX

±
c 〉|2
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−〈δX±
a δX

±
b 〉〈δX±

a δX
±
c 〉〈δX±

b δX
±
c 〉

V ±
b V ±

c − |〈δX±
b δX

±
c 〉|2

− (〈δX±
a δX

±
b 〉〈δX±

a δX
±
c 〉〈δX±

b δX
±
c 〉)∗

V ±
b V ±

c − |〈δX±
b δX

±
c 〉|2

(25)

We can define a continuous variable GHZ violation as
occurring when V +

cv3V
−
cv3 < 1. This GHZ entanglement

can be produced by combining three squeezed states
on beam splitters such that the output fields (labelled
GHZ1, GHZ2 and GHZ3) are given by

δX±
GHZ1 =

√

1

3
δX±

1 −
√

2

3
δX±

2

δX±
GHZ2 =

√

1

3
δX±

1 +

√

1

6
δX±

2 +

√

1

2
δX±

3

δX±
GHZ3 =

√

1

3
δX±

1 +

√

1

6
δX±

2 −
√

1

2
δX±

3 (26)

Gorbachev and Trubilko [34], and van Loock and
Braunstein [15] consider GHZ states generated from three
beams of equal squeezing with the squeezing of beam 1
orthogonal to that of beams 2 and 3, i.e. V ±

1 = V ∓
2 =

V ∓
3 . This indeed satisfies the condition for GHZ violation

for all levels of squeezing. However an examination of the
correlations between the beams reveals they are biased
in quadrature phase. A generalisation of the argument
in Section IIC shows that pure GHZ states are maxi-
mal when this noise is unbiased. This can be arranged
here by requiring that the squeezing of input beam one
is stronger according to

V ±
1 =

1− V ∓
2,3

2
+
√

1− V ∓
2,3

2
+ V ∓

2,3

4

V ∓
2,3

(27)

This then produces a maximal GHZ state in the same
sense as we defined a maximal EPR state. That is, for
a given strength of GHZ entanglement this state has the
least number of photons.
Now consider the situation of a single squeezed beam

divided equally in three. This situation is described by
equation (26) with beam 1 squeezed, say V +

1 < 1 < V −
1 ,

but beam 2 and 3 in vacuum states V ±
2 = V ±

3 = 1. The
GHZ condition is still satisfied for this state for any fi-
nite level of squeezing provided the squeezed input beam
was in a minimum uncertainty state. This is in accor-
dance with the conclusions of Ref. [15], though the state
is clearly not maximal. However, as for the EPR case, it
is possible to create a maximal GHZ state by applying
OPAs, locally, to the three GHZ beams. In this case the
required gain of the OPAs is

G =
1√
3

(

V −
1 + 2

V +
1 + 2

)1/2

(28)

resulting in a maximal GHZ state indistinguishable from
that produced from three squeezed states, as described
by equation (27). These techniques can similarly be gen-
eralised to four or more parties.

VI. CONCLUSION

We have studied pure state EPR entanglement in
which the quantum correlations can be biased as a func-
tion of quadrature phase. We defined maximal EPR
states as states having the most EPR entanglement for
a given number of photons or equivalently as states with
minimum photon number for a given value of V +

cvV
−
cv . In

particular we identified standard, unbiased EPR states
produced from pairs of squeezed beams as maximal.
Entanglement produced from a single squeezed beam

with squeezed variance V + was found to have the same
degree of EPR correlation as entanglement from two
squeezed beams with squeezed variances V +

1 = V −
2 =√

V +. Biased entanglement is non-maximal, however we
identified local unitary operations which could convert it
to a maximal EPR state of lower photon number but the
same degree of correlation. We examined some conse-
quences of these results as they apply to teleportation.
Finally we generalised our results to tri-partite entan-

glement. We identified the maximal continuous variable
GHZ states. These are not produced from the superpo-
sition of three equally squeezed states. We showed that
our techniques could be used to produce maximal GHZ
states from the non-maximal one produced by equally
dividing a single squeezed beam.
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