297 research outputs found

    Slave finite element for non-linear analysis of engine structures. Volume 2: Programmer's manual and user's manual

    Get PDF
    The programming aspects of SFENES are described in the User's Manual. The information presented is provided for the installation programmer. It is sufficient to fully describe the general program logic and required peripheral storage. All element generated data is stored externally to reduce required memory allocation. A separate section is devoted to the description of these files thereby permitting the optimization of Input/Output (I/O) time through efficient buffer descriptions. Individual subroutine descriptions are presented along with the complete Fortran source listings. A short description of the major control, computation, and I/O phases is included to aid in obtaining an overall familiarity with the program's components. Finally, a discussion of the suggested overlay structure which allows the program to execute with a reasonable amount of memory allocation is presented

    Predictors of non‐adherence to prescribed prophylactic clotting‐factor treatment regimens among adolescent and young adults with a bleeding disorder

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/133588/1/hae12951_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/133588/2/hae12951.pd

    Skin Cancers Among Albinos at a University Teaching Hospital in Northwestern Tanzania: A Retrospective Review of 64 Cases.

    Get PDF
    Skin cancers are a major risk associated with albinism and are thought to be a major cause of death in African albinos. The challenges associated with the care of these patients are numerous and need to be addressed. The aim of this study was to outline the pattern and treatment outcome of skin cancers among albinos treated at our centre and to highlight challenges associated with the care of these patients and proffer solutions for improved outcome. This was a retrospective study of all albinos with a histopathological diagnosis of skin cancer seen at Bugando Medical Centre from March 2001 to February 2010. Data collected were analyzed using descriptive statistics. A total of 64 patients were studied. The male to female ratio was 1.5:1. The median age of patients was 30 years. The median duration of illness at presentation was 24 months. The commonest reason for late presentation was financial problem. Head and the neck was the most frequent site afflicted in 46(71.8%) patients. Squamous cell carcinoma was the most common histopathological type in 75% of cases. Surgical operation was the commonest modality of treatment in 60 (93.8%) patients. Radiotherapy was given in 24(37.5%) patients. Twenty-seven (42.2%) of the patients did not complete their treatment due to lack of funds. Local recurrence following surgical treatment was recorded in 6 (30.0%) patients. Only thirty-seven (61.7%) patients were available for follow-up at 6-12 months and the remaining patients were lost to follow-up. Skin cancers are the most common cancers among albinos in our environment. Albinism and exposure to ultraviolet light appears to be the most important risk factor in the development of these cancers. Late presentation and failure to complete treatment due to financial difficulties and lack of radiotherapy services at our centre are major challenges in the care of these patients. Early institution of preventive measures, early presentation and treatment, and follow-up should be encouraged in this population for better outcome

    Amelogenesis imperfecta

    Get PDF
    Amelogenesis imperfecta (AI) represents a group of developmental conditions, genomic in origin, which affect the structure and clinical appearance of enamel of all or nearly all the teeth in a more or less equal manner, and which may be associated with morphologic or biochemical changes elsewhere in the body. The prevalence varies from 1:700 to 1:14,000, according to the populations studied. The enamel may be hypoplastic, hypomineralised or both and teeth affected may be discoloured, sensitive or prone to disintegration. AI exists in isolation or associated with other abnormalities in syndromes. It may show autosomal dominant, autosomal recessive, sex-linked and sporadic inheritance patterns. In families with an X-linked form it has been shown that the disorder may result from mutations in the amelogenin gene, AMELX. The enamelin gene, ENAM, is implicated in the pathogenesis of the dominant forms of AI. Autosomal recessive AI has been reported in families with known consanguinity. Diagnosis is based on the family history, pedigree plotting and meticulous clinical observation. Genetic diagnosis is presently only a research tool. The condition presents problems of socialisation, function and discomfort but may be managed by early vigorous intervention, both preventively and restoratively, with treatment continued throughout childhood and into adult life. In infancy, the primary dentition may be protected by the use of preformed metal crowns on posterior teeth. The longer-term care involves either crowns or, more frequently these days, adhesive, plastic restorations

    Mutational hot spot in the DSPP gene causing dentinogenesis imperfecta type II

    Full text link
    The current system for the classification of hereditary defects of tooth dentin is based upon clinical and radiographic findings and consists of two types of dentin dysplasia (DD) and three types of dentinogenesis imperfecta (DGI). However, whether DGI type III should be considered a distinct phenotype or a variation of DGI type II is debatable. In the 30 years since the classification system was first proposed, significant advances have been made regarding the genetic etiologies of inherited dentin defects. DGI type II is recognized as an autosomal dominant disorder with almost complete penetrance and a low frequency of de novo mutations. We have identified a mutation (c.52G→T, p.V18F) at the first nucleotide of exon 3 of the DSPP (dentin sialophosphoprotein) gene in a Korean family (de novo) and a Caucasian family. This mutation has previously been reported as causing DGI type II in a Chinese family. These findings suggest that this mutation site represents a mutational “hot spot” in the DSPP gene. The clinical and radiographic features of these two families include the classic phenotypes associated with both DGI type II and type III. Finding that a single mutation causes both phenotypic patterns strongly supports the conclusion that DGI type II and DGI type III are not separate diseases but rather the phenotypic variation of a single disease. We propose a modification of the current classification system such that the designation “hereditary opalescent dentin” or “DGI type II” should be used to describe both the DGI type II and type III phenotypes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47595/1/439_2004_Article_1223.pd

    Dentin dysplasia type I: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Dentin dysplasia is a rare hereditary disturbance of dentin formation characterized by defective dentin development with clinically normal appearing crowns, severe hypermobility of teeth and spontaneous dental abscesses or cysts. Radiographic analysis shows obliteration of all pulp chambers, short, blunted and malformed or absent roots and peri-apical radiolucencies of non carious teeth.</p> <p>Case presentation</p> <p>We present a case of dentin dysplasia type I in a 12-year-old Iranian boy, and the clinical, radiographic and histopathologic findings of this condition and treatment are described.</p> <p>Conclusions</p> <p>There are still many inconclusive issues in the diagnosis and management of patients with dentin dysplasia. The diagnostic features of this rare disturbance will remain incompletely defined until additional cases have been described. Early diagnosis of the condition and initiation of effective regular dental treatments may help these patients to prevent or delay loss of dentition.</p

    A novel DSPP mutation causes dentinogenesis imperfecta type II in a large Mongolian family

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies have shown that the clinical phenotypes of dentinogenesis imperfecta type II (DGI-II) may be caused by mutations in <it>dentin sialophosphoprotein </it>(<it>DSPP</it>). However, no previous studies have documented the clinical phenotype and genetic basis of DGI-II in a Mongolian family from China.</p> <p>Methods</p> <p>We identified a large five-generation Mongolian family from China with DGI-II, comprising 64 living family members of whom 22 were affected. Linkage analysis of five polymorphic markers flanking <it>DSPP </it>gene was used to genotype the families and to construct the haplotypes of these families. All five DSPP exons including the intron-exon boundaries were PCR-amplified and sequenced in 48 members of this large family.</p> <p>Results</p> <p>All affected individuals showed discoloration and severe attrition of their teeth, with obliterated pulp chambers and without progressive high frequency hearing loss or skeletal abnormalities. No recombination was found at five polymorphic markers flanking DSPP in the family. Direct DNA sequencing identified a novel A→G transition mutation adjacent to the donor splicing site within intron 3 in all affected individuals but not in the unaffected family members and 50 unrelated Mongolian individuals.</p> <p>Conclusion</p> <p>This study identified a novel mutation (IVS3+3A→G) in <it>DSPP</it>, which caused DGI-II in a large Mongolian family. This expands the spectrum of mutations leading to DGI-II.</p

    "GINEXMAL RCT: Induction of labour versus expectant management in gestational diabetes pregnancies"

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gestational Diabetes (GDM) is one of the most common complications of pregnancies affecting around 7% of women. This clinical condition is associated with an increased risk of developing fetal macrosomia and is related to a higher incidence of caesarean section in comparison to the general population. Strong evidence indicating the best management between induction of labour at term and expectant monitoring are missing.</p> <p>Methods/Design</p> <p>Pregnant women with singleton pregnancy in vertex presentation previously diagnosed with gestational diabetes will be asked to participate in a multicenter open-label randomized controlled trial between 38+0 and 39+0 gestational weeks. Women will be recruited in the third trimester in the Outpatient clinic or in the Day Assessment Unit according to local protocols. Women who opt to take part will be randomized according to induction of labour or expectant management for spontaneous delivery. Patients allocated to the induction group will be admitted to the obstetric ward and offered induction of labour via use of prostaglandins, Foley catheter or oxytocin (depending on clinical conditions). Women assigned to the expectant arm will be sent to their domicile where they will be followed up until delivery, through maternal and fetal wellbeing monitoring twice weekly. The primary study outcome is the Caesarean section (C-section) rate, whilst secondary measurement4s are maternal and neonatal outcomes. A total sample of 1760 women (880 each arm) will be recruited to identify a relative difference between the two arms equal to 20% in favour of induction, with concerns to C-section rate. Data will be collected until mothers and newborns discharge from the hospital. Analysis of the outcome measures will be carried out by intention to treat.</p> <p>Discussion</p> <p>The present trial will provide evidence as to whether or not, in women affected by gestational diabetes, induction of labour between 38+0 and 39+0 weeks is an effective management to ameliorate maternal and neonatal outcomes. The primary objective is to determine whether caesarean section rate could be reduced among women undergoing induction of labour, in comparison to patients allocated to expectant monitoring. The secondary objective consists of the assessment and comparison of maternal and neonatal outcomes in the two study arms.</p> <p>Trial Registration</p> <p>The study protocol has been registered in the ClinicalTrials.gov Protocol Registration System, identification number <a href="http://www.clinicaltrials.gov/ct2/show/NCT01058772">NCT01058772</a>.</p
    • 

    corecore