133 research outputs found
Forces and atomic relaxations in the pSIC approach with ultrasoft pseudopotentials
We present the scheme that allows for efficient calculations of forces in the
framework of pseudopotential self-interaction corrected (pSIC) formulation of
the density functional theory. The scheme works with norm conserving and also
with ultrasoft pseudopotentials and has been implemented in the plane-wave
basis code {\sc quantum espresso}. We have performed tests of the internal
consistency of the derived expressions for forces considering ZnO and CeO
crystals. Further, we have performed calculations of equilibrium geometry for
LaTiO, YTiO, and LaMnO perovskites and also for Re and Mn pairs in
silicon. Comparison with standard DFT and DFT+U approaches shows that in the
cases where spurious self-interaction matters, the pSIC approach predicts
different geometry, very often closer to the experimental data.Comment: 11 pages, 2 figure
Growth Kinetics of Vitamin C Crystals in a Batch L(+)-Ascorbic Acid – Methanol – Ethanol – Water System: Size Independent Growth Model Approach
The experimental data concerning growth kinetics of vitamin C (L(+)-ascorbic acid, LAA) crystals in a seeded and cooling batch mass crystallization process realized in a four–compound: L(+)-ascorbic acid–methanol–ethanol–water system are reported. Influences of initial composition of solution and its linear cooling rate on “average, effective” values of crystal linear growth rate were examined. Small divergences between LAA crystal size distributions (CSDs) data from granulometric analysis and Coulter counter were interpreted theoretically and discussed. Linear growth rates of crystals in a batch crystallizer were acquired with a proposed by Nývlt indirect method, based on the analysis of population density n(L) data in a MSMPR (mixed suspension mixed product removal) crystallizer. Size–independent growth (SIG) kinetics was assumed. It can be concluded, that the largest and the most uniform particles of purified, crystalline vitamin C correspond to higher initial concentration of L(+)-ascorbic acid in a solution and lower cooling rate applied
Growth Kinetics of Vitamin C Crystals in a Batch L(+)-Ascorbic Acid – Methanol – Ethanol – Water System: Size Independent Growth Model Approach
The experimental data concerning growth kinetics of vitamin C (L(+)-ascorbic acid, LAA) crystals in a seeded and cooling batch mass crystallization process realized in a four–compound: L(+)-ascorbic acid–methanol–ethanol–water system are reported. Influences of initial composition of solution and its linear cooling rate on “average, effective” values of crystal linear growth rate were examined. Small divergences between LAA crystal size distributions (CSDs) data from granulometric analysis and Coulter counter were interpreted theoretically and discussed. Linear growth rates of crystals in a batch crystallizer were acquired with a proposed by Nývlt indirect method, based on the analysis of population density n(L) data in a MSMPR (mixed suspension mixed product removal) crystallizer. Size–independent growth (SIG) kinetics was assumed. It can be concluded, that the largest and the most uniform particles of purified, crystalline vitamin C correspond to higher initial concentration of L(+)-ascorbic acid in a solution and lower cooling rate applied
J1420--0545: The radio galaxy larger than 3C236
We report the discovery of the largest giant radio galaxy, J1420-0545: a FR
type II radio source with an angular size of 17.4' identified with an optical
galaxy at z=0.3067. Thus, the projected linear size of the radio structure is
4.69 Mpc (if we assume that H_{0}=71 km\s\Mpc, Omega_{m}=0.27, and
Omega_{\Lambda}=0.73). This makes it larger than 3C236, which is the largest
double radio source known to date. New radio observations with the 100 m
Effelsberg telescope and the Giant Metrewave Radio Telescope, as well as
optical identification with a host galaxy and its optical spectroscopy with the
William Herschel Telescope are reported. The spectrum of J1420-0545 is typical
of elliptical galaxies in which continuum emission with the characteristic
4000A discontinuity and the H and K absorption lines are dominated by evolved
stars. The dynamical age of the source, its jets' power, the energy density,
and the equipartition magnetic field are calculated and compared with the
corresponding parameters of other giant and normal-sized radio galaxies from a
comparison sample. The source is characterized by the exceptionally low density
of the surrounding IGM and an unexpectedly high expansion speed of the source
along the jet axis. All of these may suggest a large inhomogeneity of the IGM.Comment: 20 pages, 5 figures, 3 table
Signatures of the disk-jet coupling in the Broad-line Radio Quasar 4C+74.26
Here we explore the disk-jet connection in the broad-line radio quasar
4C+74.26, utilizing the results of the multiwavelength monitoring of the
source. The target is unique in that its radiative output at radio wavelengths
is dominated by a moderately-beamed nuclear jet, at optical frequencies by the
accretion disk, and in the hard X-ray range by the disk corona. Our analysis
reveals a correlation (local and global significance of 96\% and 98\%,
respectively) between the optical and radio bands, with the disk lagging behind
the jet by days. We discuss the possible explanation for this,
speculating that the observed disk and the jet flux changes are generated by
magnetic fluctuations originating within the innermost parts of a truncated
disk, and that the lag is related to a delayed radiative response of the disk
when compared with the propagation timescale of magnetic perturbations along
relativistic outflow. This scenario is supported by the re-analysis of the
NuSTAR data, modelled in terms of a relativistic reflection from the disk
illuminated by the coronal emission, which returns the inner disk radius
. We discuss the global energetics in
the system, arguing that while the accretion proceeds at the Eddington rate,
with the accretion-related bolometric luminosity erg s , the jet total kinetic energy
erg s, inferred from the dynamical
modelling of the giant radio lobes in the source, constitutes only a small
fraction of the available accretion power.Comment: 9 pages and 6 figures, ApJ accepte
Period changes of the sample of eclipsing binaries with active chromospheres
In this work we present results derived from analysis of the O-C behaviour of ten eclipsing binary systems: AR Lac, CG Cyg, HP Aur, MM Her, RS CVn, RT And, SV Cam, V471 Tau, WW Dra and CF Tuc. It was proved on the basis of moments of minima compiled from the literature and new ones determined from recent observations, that these binaries show long term (19-91 years) modulations of their orbital periods, clearly visible in their O-C diagrams. Two possible explanations for this effect are considered: (1) the light-travel time effect due to the presence of a third body orbiting the eclipsing systems; (2) the Applegate mechanism predicting period modulation by changes in the distribution of angular momentum as a star goes through its activity cycles. It was found that in the case of four systems the existence of a third star, orbiting the binary, is a more plausible explanation of observations
Pulsational Mapping of Calcium Across the Surface of a White Dwarf
We constrain the distribution of calcium across the surface of the white
dwarf star G29-38 by combining time series spectroscopy from Gemini-North with
global time series photometry from the Whole Earth Telescope. G29-38 is
actively accreting metals from a known debris disk. Since the metals sink
significantly faster than they mix across the surface, any inhomogeneity in the
accretion process will appear as an inhomogeneity of the metals on the surface
of the star. We measure the flux amplitudes and the calcium equivalent width
amplitudes for two large pulsations excited on G29-38 in 2008. The ratio of
these amplitudes best fits a model for polar accretion of calcium and rules out
equatorial accretion.Comment: Accepted to the Astrophysical Journal. 16 pages, 10 figures
Period changes of the sample of eclipsing binaries with active chromospheres
In this work we present results derived from analysis of the O-C behaviour of ten eclipsing binary systems:
AR Lac, CG Cyg, HP Aur, MM Her, RS CVn, RT And, SV Cam, V471 Tau, WW Dra and CF Tuc. It was proved on
the basis of moments of minima compiled from the literature and new ones determined from recent observations,
that these binaries show long term (19-91 years) modulations of their orbital periods, clearly visible in their OC diagrams. Two possible explanations for this effect are considered: (1) the light-travel time effect due to the presence of a third body orbiting the eclipsing systems; (2) the Applegate mechanism predicting period modulation by changes in the distribution of angular momentum as a star goes through its activity cycles. It was found that in the case of four systems the existence of a third star, orbiting the binary, is a more plausible explanation of observations
- …