60 research outputs found

    A fully continuous and modular monoclonal antibody purification process with capture via precipitation

    Get PDF
    Please click Additional Files below to see the full abstract

    A hybrid automata approach for monitoring the patient in the loop in artificial pancreas systems

    Get PDF
    The use of automated insulin delivery systems has become a reality for people with type 1 diabetes (T1D), with several hybrid systems already on the market. One of the particularities of this technology is that the patient is in the loop. People with T1D are the plant to control and also a plant operator, because they may have to provide information to the control loop. The most immediate information provided by patients that affects performance and safety are the announcement of meals and exercise. Therefore, to ensure safety and performance, the human factor impact needs to be addressed by designing fault monitoring strategies. In this paper, a monitoring system is developed to diagnose potential patient modes and faults. The monitoring system is based on the residual generation of a bank of observers. To that aim, a linear parameter varying (LPV) polytopic representation of the system is adopted and a bank of Kalman filters is designed using linear matrix inequalities (LMI). The system uncertainty is propagated using a zonotopic-set representation, which allows determining confidence bounds for each of the observer outputs and residuals. For the detection of modes, a hybrid automaton model is generated and diagnosis is performed by interpreting the events and transitions within the automaton. The developed system is tested in simulation, showing the potential benefits of using the proposed approach for artificial pancreas systems.Peer ReviewedPostprint (published version

    A Comparison of Clinical Control Strategies for the Hyperglycemia of Injury and Illness

    Get PDF
    Abstract-The performances of several closed-loop algorithms for the automated regulation of blood glucose in an intensive care unit are compared in simulation studies. A nonlinear compartmental model with 15 distinct sets of patient parameter values is used to mimic the difficulties faced by an ICU treating many patients with different insulin sensitivities. A major advantage to the classical PID strategy is that the tuning parameters are a clear function of sample time, whereas other published strategies are specific to a given sample time. It is difficult to regulate extreme patients (extremely low or high insulin sensitivities) with any of the controllers with fixed-parameter control laws

    A Glycemia Risk Index (GRI) of Hypoglycemia and Hyperglycemia for Continuous Glucose Monitoring Validated by Clinician Ratings

    Get PDF
    BackgroundA composite metric for the quality of glycemia from continuous glucose monitor (CGM) tracings could be useful for assisting with basic clinical interpretation of CGM data.MethodsWe assembled a data set of 14-day CGM tracings from 225 insulin-treated adults with diabetes. Using a balanced incomplete block design, 330 clinicians who were highly experienced with CGM analysis and interpretation ranked the CGM tracings from best to worst quality of glycemia. We used principal component analysis and multiple regressions to develop a model to predict the clinician ranking based on seven standard metrics in an Ambulatory Glucose Profile: very low-glucose and low-glucose hypoglycemia; very high-glucose and high-glucose hyperglycemia; time in range; mean glucose; and coefficient of variation.ResultsThe analysis showed that clinician rankings depend on two components, one related to hypoglycemia that gives more weight to very low-glucose than to low-glucose and the other related to hyperglycemia that likewise gives greater weight to very high-glucose than to high-glucose. These two components should be calculated and displayed separately, but they can also be combined into a single Glycemia Risk Index (GRI) that corresponds closely to the clinician rankings of the overall quality of glycemia (r = 0.95). The GRI can be displayed graphically on a GRI Grid with the hypoglycemia component on the horizontal axis and the hyperglycemia component on the vertical axis. Diagonal lines divide the graph into five zones (quintiles) corresponding to the best (0th to 20th percentile) to worst (81st to 100th percentile) overall quality of glycemia. The GRI Grid enables users to track sequential changes within an individual over time and compare groups of individuals.ConclusionThe GRI is a single-number summary of the quality of glycemia. Its hypoglycemia and hyperglycemia components provide actionable scores and a graphical display (the GRI Grid) that can be used by clinicians and researchers to determine the glycemic effects of prescribed and investigational treatments

    Process control: modeling, design, and simulation

    No full text

    Process Dynamics Modeling Analysis And Simulation

    No full text
    xviii;ill.;621hal.;20c
    corecore