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Abstract—The performances of several closed-loop 
algorithms for the automated regulation of blood 
glucose in an intensive care unit are compared in 
simulation studies. A nonlinear compartmental model 
with 15 distinct sets of patient parameter values is used 
to mimic the difficulties faced by an ICU treating many 
patients with different insulin sensitivities. A major 
advantage to the classical PID strategy is that the tuning 
parameters are a clear function of sample time, whereas 
other published strategies are specific to a given sample 
time. It is difficult to regulate extreme patients (extremely 
low or high insulin sensitivities) with any of the 
controllers with fixed-parameter control laws.  
 
1.0 Background 
  A clinical study by Van den Berghe et al. [9] showed that 
administering insulin infusion therapy to maintain blood 
glucose (BG) below 110mg/dl reduces overall in-hospital 
mortality by 34%, bloodstream infection by 46% and acute 
renal failure by 41%. The patients in these studies were not 
necessarily diabetic, but experienced acute “stress” 
hyperglycemia associated with their injury or illness. The 
discovery of the benefits that Tight Glycemic Control (TGC) 
offers to patient outcome resulted in a rapid adoption 
throughout ICU’s worldwide. Recent follow-up studies, 
however, now caution the practice of TGC primarily due to 
the increased risk of hypoglycemia associated with insulin 
infusion. Still the general belief throughout the medical 
community is that TGC does more benefit than harm and so 
caregivers continue its use.  
  The practice of TGC in the ICU can strain hospital 
resources because more frequent and accurate blood 
glucose measurements are required than hospitals are able 
to currently provide manually. TGC also requires insulin 
dosing protocols that rapidly but safely lower glucose levels. 
BG measurements in the ICU today are largely accomplished 
by either finger sticks using the same meters used by 
diabetics or by point of care (bedside) meters designed for 
hospital use. Results are used to determine insulin dosing 
from protocols which determine if and how much insulin 
should be administered. The process often involves table 
look-up methods but the final decision from the nurse 
properly qualifies the process as a human-in-the-loop 
feedback control system. Although such a system maintains 
the safety of human oversight, it can also introduce delayed, 
erratic or missing measurements and/or dosing, which is 
recognized as a drawback. The dosing protocols (control 
algorithms) are mostly synthesized ad-hoc, do not 
necessarily take into account physiological differences, and 
do not always lead to a steady desired state of normal BG 
(normoglycemia). Clearly, it is important that hospitals 
implement automatic monitoring and control methods that are 
safe and effective. 
 

2.0 Introduction 
  Previous work (Bequette, [2]) analyzes some of the insulin 
dosing methods currently used for TGC. Its purpose was to 
compare performance of these methods from a control 
theoretic perspective, suggest potential improvements for 
practical use, and introduce an emerging area of study to the 
control community. Since that paper, industry has been busy 
developing new devices to provide the much needed 
capabilities of automatic and frequent sampling of BG, and 
the release of these devices is expected soon. This paper 
revisits two of the control methods from the first article and 
introduces another. It further considers a new issue. ICUs 
may apply existing algorithms with the new measurement 
devices but how will these changes affect performance? Will 
the algorithms require adjustments? To address these 
questions we revisit simulations, provide faster sampling 
rates and compare the performance of each algorithm, with a 
PID control algorithm as an additional point of reference. 
  Comparisons are all based on a three-state model that 
simulates the metabolic regulation of BG and its response to 
insulin infusion. The model uses 15 sets of parameters 
(equivalently 15 distinct in-silico subjects). The simulation 
operates under time-invariant physiological parameters which 
are not necessarily realistic, but suitable for comparison. 
Open-loop steady-state and dynamic behavior of the system 
are studied to assist in the design of an Internal Model 
Control (IMC)-based discrete Proportional-Integral-Derivative 
(PID) feedback controller. The response of this controller is 
compared to the following clinical insulin dosing protocols: (1) 
Columnar Insulin Dosing (CID) by Osburne et al. [8], (2) 
Glucose Regulation for Intensive Care Patients (GRIP) by 
Vogelzang et al. [10], and (3) The Biostator II algorithm by 
Albisser [1]. In addition to the comparison of the 4 control 
methods for the 15 subjects at a fixed measurement rate, 
other results include the effects of parameter tuning and 
sample rate on control performance.  
  Control limitations are discussed regarding extreme 
metabolic parameters (e.g., low insulin sensitivity SI or high 
glucose clearance rate pG). Certain extremes can result in 
poor control regardless of the algorithm used. In some cases 
for PID, the control difficulties are mitigated by tuning the 
discrete PID parameters based on the specific subject’s 
physiological parameters. Though this may not be practical in 
the case of a commercial device it perhaps further supports 
the need for adaptive methods.  
 
 

3.0 Simulation Model 
  There have been three metabolic models used in the 
analysis and simulation of critical care patients and glycemic 
control: that of Chee et al. [7], and Chase et al. [6]. The 
model used in the present simulation study is the one 
developed by Chase. 
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  The Chase model is loosely based on Bergman’s minimal 
model [4] with additional nonlinear terms and a grouped term 
for insulin sensitivity. Unlike its precedent and the model 
developed by Chee, Chase et al takes into account 
saturation effects of plasma insulin disappearance and 
insulin-dependent glucose clearance by using Michaelis-
Menten functions. It is a simple model, consisting of only 3 
differential equations. This model has been used in several 
glycemic control trials using different control approaches. 
Summarily, for the purpose of comparing closed-loop control 
accuracy and stability, the Chase model captures most if not 
all the essential characteristics of glucose-insulin dynamics. 
 

3.1 Model Equations 
  The Chase model consists of the following set of nonlinear 
differential equations. 
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where the parameters and variables are defined as: 
 
G is the glucose concentration, relative to GE (mg/dl) 
GE equilibrium glucose concentration, with no external 

glucose feeding or insulin infusion (mg/dl) 
Q interstitial insulin concentration (mU/L) 

I plasma insulin concentration (mU/L) 
pG glucose clearance rate (min

-1
) 

SI insulin sensitivity (liters/(min*mU))  

αG a parameter that accounts for saturation of the insulin 
effect on glucose (liters/mU) 

Gf plasma glucose feed rate (mg/min) 
VG glucose distribution volume (L) 
k rate constant for insulin transfer into the effective 

compartment (min
-1
) 

n a parameter (min
-1
) 

αI a saturation parameter(liters/mU) 

VI insulin distribution volume (L) 
uex exogenous insulin infusion rate (mU/sec) 

 
Table 1. Nominal parameter values 
 

Parameters αG VG k n αI VI 

Values 1/65  15 0.0099 0.16 0.0017 12 

 
15 sets of simulation model parameters were selected to 
span the expected envelope of physiological response. The 
parameters which have the greatest impact, and which are 
varied in the simulation, are equilibrium glucose 
concentration, GE; insulin sensitivity, sI; and glucose 
clearance rate, pG. The other parameters were held constant. 
Figure 1 illustrates the range of these patient cases in terms 
of steady-state glucose response vs. steady rates of insulin 
infusion. 

0 5 10 15
50

100

150

200

250

300

uex, U/hr

G
, 

m
g
/d

L

steady-state glucose vs. insulin flow, 15 patients

 

 

patient 1

patient 2

patient 3

patient 4

patient 5

patient 6

patient 7

patient 8

patient 9

patient 10

patient11

patient 12

patient 13

patient 14

patient 15

standard patient

 

Figure 1. Steady-state input-output (insulin delivery rate-glucose 
concentration) curves for 15 subjects used in the simulation study. 

  Almost all subjects are able to achieve normal glucose 
levels within what can be reasoned as safe insulin dosing 
rates however several subjects (subject 2 and 10 are highly 
insulin resistant and subject 12 is highly insulin sensitive) 
were purposely included to represent extreme and difficult to 
control cases as a challenge to each control strategy. 
 

4.0 Control Strategies 
 

4.1 PID 
  An Internal Model Control (IMC) based Proportional Integral 
Derivative (PID) control law has the form  
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where the parameters and variables are defined as: 
 

u(k) insulin delivery rate (units/hr) 
uo basal insulin infusion rate (units/hr) 
kc loop gain (units/hr/mg/dL) 

∆t sampling interval (min) 

τI integral component rate (min) 

τD derivative component rate (min) 

e(k) error (mg/dL) 
r(k) BG reference trajectory (mg/dL) 
y(k) BG measurement (mg/dL) 

  The values kc, kc ∆t/τI, and kcτD/∆t respectively are the 
effective proportional, integral and derivative gains. These 
gains were determined using a second-order linear 
approximation of the Chase model and the strategy 
described by Bequette [3] which reduces gain determination 

to the selection of one parameter, λ.  Gains were determined 
by two methods using simulations to sequentially increase 

the value of λ and finally selecting a value that best 
minimized the objective function 
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with a constraint that the lowest glucose measurement be no 
less than 60 mg/dl. The second method used a quadratic 
optimization method with the same objective function as 
shown above. This process was repeated for each of the 15 
subjects to determine fixed gains for the controller that could 

best manage all patients. A λ = 90.1 min was used. r(k) is an 
exponential trajectory with a time constant of 120 minutes. 
Note that the PID control strategy is not used in clinical 
practice but rather provided here as an additional point of 
reference for comparisons. 
 

4.2 CID (Columnar Insulin Dosing) 
  Among the three algorithms compared to PID, CID 
represents the more commonly applied clinical method for 
insulin dosing; a simple table based control strategy that’s 
easily followed by nurses and physicians. Dosing charts 
typically provide clinicians with an appropriate multiplying 
factor to determine the next dosing rate based on current and 
previous BG measurements. The multiplying factor ranges 
from 0.1 in the 1

st
 column to 1 in 10

th
 column. For CID usage 

rules, if BG is within the normal range (80-110mg/dl), there is 
no column change, however if BG remains high on the hourly 
measurement; a column change to the right is required which 
generally increases dosing rate. Osburne et al. [8] interpreted 
the CID table procedure in terms of an iterative algorithm, 
summarized below: 
 

1
( ) ( ( ) ( 1)) (6)

2
y k y k y k= + −  

 
where y(k) is the glucose measurement in mg/dL. The 
multiplying factor, f(k), is calculated in the following 
 

thenkyIf 80)( ≤  

 

( ) ( 1) 0.01 (7)f k f k= − −  

 
thenkyifElse 110)(80 <<  

 

( ) ( 1) (8)f k f k= −  

 
thenkykyifElse )1()( −>  

( ) ( 1) 0.01 (9)f k f k= − +  

 
Else 

( ) ( 1) (10)f k f k= −  

 
and the insulin dosing, u(k), in units/hr is calculated as: 
 

( )( ) ( ) 60 ( ) (11)u k y k f k= −  
CID was originally designed for hourly BG measurements. 

Since the rate of change of gain, f(k), is a constant  ± 0.01 
(units/hr)/(mg/dL) when BG is outside the range of 80 to 110 

mg/dL, halving the rate of change to ± 0.005 
(units/hr)/(mg/dL) for 30 minute sampling seemed a 
reasonable adjustment for the purposes of this investigation.  
 
4.3 GRIP 
  Vogelzang et al. [10] developed a dosing algorithm for 
surgical intensive care patients (Glucose Regulation for 
Intensive Care Patients, GRIP). The GRIP algorithm is 
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  This original algorithm demonstrated instability in some 
patients (Bequette [2]), resulting in a revised definition of 

hy 4−∆
 
as  

4 ( ) ( 1) (15)hy y k y k−∆ = − −  

  The intended measurement sampling (and dosing) rate for 
GRIP was published at between 30 minutes to 6 hours. 
Without any factors proportional to sampling time one can 
only expect different dynamic behavior depending on 
sampling time. Figure 2 confirms this expectation where one 
subject was simulated over 30 min to 6 hour sampling times. 
Even with the revised algorithm, a 2 hour sampling rate 
results in unstable behavior.  
 

 

Figure 2. Transient glucose control response for standard patient 
using GRIP at various BG measurement and control rates. 

4.4 Biostator II 
  The Biostator II algorithm by Albisser [1] is  
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  IR1 is a nonlinear proportional action and IR2 is derivative 
action. Note the choice of proportional or derivative control 
actions is based on the error trend (GY - B). The Biostator II 
algorithm consists of multiple parameters that are set by the 
clinician: 
 

IRCALC Insulin dosing rate (units/hr) 
IRmax maximum insulin infusion rate (units/hr) 
B glucose setpoint or target (mg/dL) 
Gx glucose measurement at step x (mg/dL)  
Q gain of the controller function 
R basal infusion rate (units/hr) 
KR constant for rising glycemia 
KF constant for falling glycemia 

 
  The Biostator II was originally designed for a 1 minute 
sample rate. To accommodate a 30 minute sampling rate it is 
reasonable to reduce the control components, IR1 and IR2 
each by a factor of 30 to obtain equivalent control action. 
Typical values of KF, KR and Q were adjusted accordingly 
for the simulations. Values of parameters are listed as below 
for both 1min (Albisser [1]) and 30mins sample times.  
 

Parameters KF KR Q R 

1 min  165 45 30 11.26 

30 min 5.5 1.5 164.32 11.26 

 
5.0 Simulations 
  The simulation of each patient begins at the value of GE 
specified for that patient and the first measurement and 
control is applied at time zero. CID and GRIP are both 
designed for 1 hour sample time and Biostator II is designed 
for 1 minute sampling. Since figure 2 shows that GRIP works 
well with 30 minute sample time. We assume 30 minute 
sampling and control for our simulations. 
  Actual clinical application requires a maximum limit on the 
insulin dosing rate and calls for special interventions when 
BG levels begin to approach dangerous levels of 
hypoglycemia, this investigation excludes any limiting to level 
the comparisons and see where the course of control takes 
each patient over a 12 hour period. Limits can sometimes 
mask inherent control instabilities.  
  Although the goal of TGC is to reach a metabolic state of 
normoglycemia in the 80 to 110 mg/dL range, it is not clear 
how rapidly a patient should be controlled to this range. 
Indications are that 12 hours might be acceptable but that a 
period of 6 hours or less might be more desirable. But for 
many cases approaching normoglycemia in less than 3 hours 
could require significant infusion rates of insulin, elevating the 
risk of hypoglycemia. To represent a reasonable target for 
glucose rate of change and time to control, this analysis used 
an exponential trajectory for the PID control strategy with 
time constant of 120 minutes. This choice was also applied to 
the three other control strategies to further level 
comparisons. The trajectory is initialized at the first BG 
reading and exponentially targets 100 mg/dL in each case. 
 

6.0 Results 
  Results compare the 4 control methods for the 15 subjects 
at a fixed BG measurement and control rate of 30 minutes by 
the illustrated plots in figures 3 through 6. 
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 Figure 3.  Modified CID for 15 patients at 30 minute sampling. 
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Figure 4. GRIP for 15 patients at 30 minute sampling. 
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Figure 5.  Biostator II for 15 patients at 30 minute sampling 
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Figure 6.  PID for 15 patients at 30 minute sampling. 

 

  

  
  

Figure 7.  Mean vs Minimum of glucose concentration of all four 
algorithms at 30 min sampling. Each dot represents one patient. 

   
  For PID, a single λ value is found to minimize the objective 
function over all 15 patients  
                                          
                                                                                           
 
Figure 7 shows that the PID has most of the patients in the 
normal range while GRIP has a higher glucose range, and 
CID and Biostator II yield highly variable control. 
 

7.0 Conclusions 
  The main results show that of the four control strategies, 
GRIP and PID appear to provide the best control, avoiding 
any dangerous levels of hypoglycemia and reaching a 
suitable BG level within 12 hours for all patients except the 
high insulin resistant cases (patient 2 and 10). None of the 
control methods were able to lower BG for these patients. 

Also, no algorithms except GRIP can elevate the glucose to 
normal range for the case of patient 12. It should be noted 
that patient 12 is characterized by combination of extreme 
physiological parameters which does not exist realistically. 
The PID however appears to be more aggressive than the 
GRIP, and although it achieves a closer approach to 
acceptable BG levels at 12 hours, PID does result in 
extended low BG for the insulin sensitive patient. For this 
patient, the GRIP algorithm appears to provide the best 
performance. Still GRIP does not accommodate some longer 
sample rates as evidenced in figure 2. 
  Although CID provided control for a good number of 
subjects it also led to lethal levels of extended hypoglycemia 
in several subjects. In practice the CID protocol recognizes 
this shortcoming and specifically instructs the clinician to 
dose D50W (dextrose and water) should BG measurements 
fall below 80 mg/dL. 
  The Biostator II showed the poorest response, with 5 or 6 
patients reaching extended levels of hypoglycemia; some at 
lethal levels. Modifications may not have been necessarily 
adjusted at optimum scale, but even simulation work at the 
normal 1 minute sampling shows the Biostator II to be 
aggressive compared to the other algorithms, reaching target 
BG in less than 2 hours. 
  The results of this investigation demonstrate that changes in 
BG measurement frequency can impact the effectiveness of 
BG control depending on the choice of control strategy and 
whether or how these strategies are modified to 
accommodate sampling frequency. Of the three strategies 
selected for this investigation none include parameters that 
automatically adjust for different measurement and control 
frequencies as does the PID control strategy. 
  Automatic BG measurement devices that are soon 
expected on the market will likely provide clinicians with a 
range of selectable measurement frequencies. Selectable 
frequencies will probably range from those currently 
practiced (typically hourly measurements) to much higher 
frequencies with multiple measurements within an hour. 
  Effective dosing protocols for these new devices will 
therefore require the ability to accommodate this range of 
measurement frequencies to achieve a stable and suitable 
rate of control.  Each of the control strategies evaluated in 
this simulation study requires further refinement to be 
deemed effective. 
  Further simulation work with the PID control strategy 
demonstrates that improved response is effectively managed 
by tuning PID gains for each patient case. Offering the ability 
for a user or clinician to ‘tune’ dosing controls for each patient 
would be impractical unless the process could be automated. 
A general conclusion is that strictly linear controls are not 
entirely effective and that nonlinear controls are likely the 
better choice. Each of the three clinical methods selected for 
investigation in this paper represent different nonlinear 
control strategies presumably derived using empirical 
methods. Although the comparative simulations show these 
methods are somewhat effective, none are more effective 
than the PID. Imagine the improvements a nonlinear control 
strategy might have to offer if approached by the same rigor 
as used in the PID strategy presented here. 
  Control engineers should be aware of the rapidly evolving 
need for sound control algorithms to implement TGC. New 
automated sensors will soon be available on the market, and 
researchers should be working now to develop more effective 
algorithms that take proper advantage of the improved 
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accuracy and increased measurement frequency capability 
they will offer. Future work should focus on nonlinear and 
adaptive control algorithms that accommodate variable 
sampling and models that include realistic time-varying 
parameters. 
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Appendix 
 

Table A1.  15 patient physiological parameters 

 

Patient SI(liters/(min*mU)) pG(min
-1

) GE (mg/dl) 

1 0.004088 0.080537 269.5898 

2 0.001412 0.080537 269.5898 

3 0.004088 0.023463 269.5898 

4 0.001412 0.023463 269.5898 

5 0.004088 0.080537 180.4102 

6 0.001412 0.080537 180.4102 

7 0.004088 0.023463 180.4102 

8 0.001412 0.023463 180.4102 

9 0.00275 0.052 225 

10 0.0005 0.052 225 

11 0.005 0.052 225 

12 0.00275 0.004 225 

13 0.00275 0.1 225 

14 0.00275 0.052 150 

15 0.00275 0.052 300 
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For a second-order process model 
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The IMC-based PID parameter values are [3] 
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