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An automated meal detector and bolus
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Abstract: The aim of this study is to develop an algorithm for detection of unannounced
meals and an insulin bolus calculator (BC) to work in combination with the meal detector.
The input of the meal detector are the continuous glucose monitoring (CGM) data and the
insulin infusion rate. During daytime, the automated meal detector and the BC control the
blood glucose concentration. During nighttime, a model predictive control (MPC) algorithm
regulates the basal insulin rate. The meal detector detects the occurrence of a meal, estimates
the amount of carbohydrate (CHO) in the meal, and estimates the meal onset time. The BC
computes a bolus dose to cover the detected meal. We test the meal detector and the BC on nine
virtual type 1 diabetes (T1D) patients. The meal detection algorithm, applied on the virtual
patients, has a median detection delay of 40 min, detection sensitivity of 80% and a median
meal onset estimation bias of 15 min. The algorithm does not have false positive.

© 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Type 1 diabetes, Meal detection, Kalman filter, Bolus calculator.

1. INTRODUCTION

It is crucial that people with type 1 diabetes (T1D) re-
ceive adequate and prompt meal bolus insulin to lower
postprandial blood glucose (BG) and to achieve the target
hemoglobin A1C (HbA1C) level (Burdick et al., 2004).
Prandial BG control is a challenge for open-loop basal-
bolus insulin therapy and for artificial pancreas (AP)
systems. Several AP studies challenge their AP by unan-
nounced meals without meal announcement or meal detec-
tion techniques (Dassau et al., 2017; Chakrabarty et al.,
2017; Pinsker et al., 2016; Reddy et al., 2016). A tradi-
tional approach to overcome the challenge of postprandial
BG control is prandial announcement or manual bolus
administration (Emami et al., 2017; Breton et al., 2012;
Phillip et al., 2013). Nevertheless, these actions require
patient’s intervention which increases the safety risks due
to the nonadherence of the patient to meal announcements
(Bequette, 2012; Cameron et al., 2014, 2012). Automated
meal detection and meal-size estimation is another ap-
proach to cope with meal challenge, and it can be a safety
feature for patients who frequently forget to enter meal
information to their therapeutic device.

The aim of the current study is to develop an algorithm
for detection of unanounced meals which can be used in
an AP or in an open-loop basal-bolus insulin therapy. We

* This work is funded by the Danish Diabetes Academy supported
by the Novo Nordisk Foundation, NIH grant number 1R01DK102188,
NSF grant.

use the meal detection algorithm in the latter case and
we limit the closed-loop BG control to nighttime when
the patient does not take a meal. We also develop a user
friendly model identification method for the meal detector.
The identification method is easy to use in the clinical
setups. For postprandial BG control, we develop an insulin
bolus calculator (BC) that works in combination with
the meal detector. We demonstrate that combining the
meal detector with the bolus calculator can reduce the
postprandial glycemic variability.

The rest of the paper is organized as follows. Section 2
describes the methods of the study. After giving a brief
summary of the meal detection algorithm, we present
the input-output model and the converted state-space
model for the meal detector. Then we explain the model
identification method. Later in this section, we explain
the different parts of the meal detector and we continue
with introducing the BC. The next subsection of Section
2 describes the model predictive control (MPC) for the
nighttime BG regulation. Section 3 presents the results
and discussion. Section 4 contains the conclusion of the

paper.
2. MATERIALS AND METHODS
2.1 The meal detection algorithm: a brief summary

We use the Medtronic Virtual Patient (MVP) as the T1D
simulator (Kanderian et al., 2009). The MVP model con-
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tains the pharmacokinetics and pharmacodynamics of in-
sulin and BG, and the two-compartmental model of CHO
absorption by Hovorka et al. (2008). u  is the subcutaneous
(SC) insulin input rate (U/min) and contains both basal
and bolus insulin administrations. The continuous glucose
monitoring (CGM) is corrupted by measurement noise, v.
The unannounced meal disturbance w41 denotes the CHO
ingestion rate (g/min). A Kalman filter (KF) estimates uq;
along with other states of the model. The model in the KF
is based on a linear input-output relation between BG and
insulin and between BG and CHO. The innovation of the
KF enters a cumulative sum (CUSUM) change detection
algorithm. The CUSUM algorithm applies a statistical
test on the innovation and announces the occurrence of a
change if the alternative hypothesis of the test is accepted.
When the CUSUM test detects a change in the innovation
and 147 exceeds a data-derived threshold, a Rauch- Tung-
Striebel (RTS) fixed-interval smoother estimates g1 x|k, ,

for k = l%s, ..., kq—1. The time instant, k,, is the detection
time and ks is the estimated meal onset. An integrator
calculates the meal-size by integrating the smoothed esti-
mates, g1 kk, - 1f the estimated meal size is greater than
a pre-defined threshold, the meal detector announces the
presence of a meal and the BC computes an insulin bolus
for the detected meal.

2.2 The input-output model

The input-output model for insulin and food intake is a
second order linear model. In the Laplace domain it is
defined as:

Y(s) = Kr Ur(s) + Ka sUa(s). (1)

(ris+1)2 7 (tas + 1)
The output Y(s) is the change in the BG concentration
in Laplace domain. U;(s) is the SC insulin input rate
(U/min), and Ug; (s) is the rate of ingested CHO (g/min).
The gains, K; and K4, correspond to the steady state
change in BG, and the time constants, 7; and 74, determine
the time it takes to reach the steady state.

2.3 The state-space model

A canonical realization of the model in (1) provides the
state-space matrices A, By, By, and C. These matrices
depend on the estimates of the unknown parameter vector,
0 = [Kr Kq 11 74)7. An integrated white noise models the
ingested meal. Therefore, the meal disturbance adds two
states to the model which are ug4; and ugo. The state-space
model in the stochastic differential equation (SDE) form
is

d(t) = (A(H)x(t) + Br(0)us(t) + Bd(ﬂ)udl(t))dt (2a)
+ Grdw(t),

dugy (t) = ugz(t)dt, (2b>
dugz(t) = Gdw(t), dw(t) ~ N(0,Idt), (2c)
Yk = C(@)l‘k + Vg, Vg ~ ]\7(07 R), (Qd)
G, = [U:cl Ox2 O3 Ugc4]T (26)

The input, ug, is the ingested CHO rate (g/min), and ugo
(g/min?) is the rate of change of ug;. The process noise,
dw, is a standard Wiener process and v is the sensor noise.
The output, y, is the CGM measurement. As ug; and ugo

are unknown, the original states, z, are augmented with

the CHO state vector, u§ = ZZ; , for estimation by the

KF. The augmented state-space model is
dz(t)dt = (A“(O)x“(t) + B“(H)ul(t))dt + Gdw(t),
(3a)
dw(t) ~ N(0,Idt), (3b)
ye = C(0)zf + vp v ~ Niia(0, R), (3c)
where x%(t) = {Ja((tt))] . Combining matrices A, By, By, C,
d
G, and G, with blocks of zero matrices (with appropriate
dimension) gives the augmented matrices A%, B?, C¢,
and G*. The continuous-discrete-time stochastic linear

state space model in (3) is converted to the discrete-time
stochastic linear model

af = A%zl + B g + wy, (4a)
2 = Cal‘%, (4b)
Yk = 2k + Vg (4c)
Wy ~ Niid(oa Q)7 (4d)

vk ~ Niia(0, R). (4e)

A discrete KF estimates the augmented state vector, z®.

2.4 The discrete-time KF for meal estimation

The discrete KF estimates the augmented states, le i and

their covariance, Py, (Mahmoudi et al., 2017, 2016). The
one-step prediction for the mean and covariance is

Fppoy = A8+ Bk, (5a)
T
Pyjj—1 = A% Py, [A%]" + Q. (5b)

The corresponding one-step ahead prediction of the mea-
surement, g1, is given by

Urlk—1 = Zkjp—1 = C8_1, (6)

such that the innovation, ey, and its covariance, R.,, can
be computed as

(7a)
(7b)

ek = Yk — Ykk—1,
a a T
Rep = C"Pyp—1 [C] + R,
in which R = 2. The KF gain is
a1l e
Ky, = Py [C*]” R, (8)
and the filtered mean, ;%%‘ i» and covariance, Py, for the
augmented states are

(9a)
(9b)

i'zlk = jz‘k—l + Kkek;,
Py = Pyjo—1 — K Re 1 K, .
The filtered augmented state vector is

T = [T Qar kiks Daz k)k)-
2.5 Model identification

Insulin transfer function ~ We use the impulse response
identification method to estimate the parameter, 6 =
[Kr K4 71 74)7. The unit insulin impulse response is

hi(t) = Ki(t/77) exp(—t/7r). (10)
The time constant, 77, is equivalent to the insulin action
time. Using the insulin impulse response, we identify 77,
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CHO

Up,bolus 1

Fig. 1. A simple model that describes the routes where
meal and insulin exert their effects on the BG con-
centration. CCF is the CHO conversion factor, CIR is
CHO to insulin ratio and ISF is the insulin sensitivity
factor.

K, and the insulin sensitivity factor, ISF (mg/dL/1U)
following the method by Boiroux et al. (Boiroux et al.,
2017a). In practice, the patients and their caregivers
empirically determine ISF and 7; for daily insulin dose
adjustments. By knowing 7; and ISF and using the insulin
impulse response, the gain, K is identified as

K] :Tfexp(l)ISF. (11)

CHO transfer function  For identification of the gain, K,
and the time constant, 74, we do the following procedure.
The simple model in Fig. 1 demonstrates the routes with
which insulin and meal exert their effect on BG. In route
A, the CHO conversion factor, CCF (mg/dL/g), converts
the CHO in wug; into a corresponding increase in BG.
In route B, the ISF converts u; into a corresponding
reduction in BG. The CHO-to-insulin-ratio, CIR (g/IU)
is an estimate of the grams of CHO that one unit of rapid-
acting insulin can cover. Caregivers and patients use the
500 Rule for CIR calculation, CIR = 500/TDD, where
TDD is the total daily dose of insulin. The TDD of the
MVP patients is given in the study by Kanderian et al.
(2009). We also use the 500 Rule in the study. The bolus
insulin dose, ur poius, computed according to ur poius =
CHO/CIR, covers the CHO content in ug; (Boiroux et al.,
2017b). Ideally, the maximum reduction in the BG due
t0 U7 polus should compensate the maximum increase in
BG caused by the CHO in wug;. This is equivalent to
U7 polus-ISF = CHO.CCF. Therefore an estimate of CCF
is given as CCF = ISF/CIR.

The unit CHO impulse response is

ha(t) = Ka(t/7]) exp(—t/7a). (12)
The CHO impulse response has its peak at 74,
Yd,maz = CHO.hq maz = CHO.K4(1/74) exp(—1). (13)

CCF causes the peak in g4, and the relation between the
peak and the CCF is described as

Using (13) and (14), an expression for Ky is given by

K4 = 1qexp(1)CCF. (15)

The solution to the least squares optimization problem
below gives an estimate of Ky and 74:

min ¢(74, Kq) =

Z [y (ti

9(ti, 74, Ka)ll3, (16a)

Td,Ka
s.t.

30 < 14 < 300, (16b)

Ky =14exp(1)CCF, (16¢)
z(t =0) = zo(= 0), (16d)
u(t =0) = up(=0), (16e)

T = (Td,Kd) ( ) + B(Td,Kd)u(t) (16f)

§ = C(7a, Ka)x(t). (16g)

The matrix B is [By, By|, and the input, u, contains insulin
and meal, i.e., u = [ur,uq1]’. The output y is the CGM
data. The patient ingests the meal, ug4;, with a known CHO
content and takes the bolus insulin, us poius, to cover the
meal.

2.6 The CUSUM algorithm for meal detection

A CUSUM test detects the ingestion of a meal and
estimates the onset time by applying a statistical test on
the sequence of random variable {z;};=12, ..., where z; = ¢;
and e is the KF innovation. The variable z has the mean
p and variance o2. The problem is to detect whether p is
large enough to be detected as a meal, and what is the
onset of meal-related change in . The change detection
problem is then:

e to detect whether a meal is ingested,
e to estimate the meal start time, t,

The hypotheses of the change detection in the innovation
are:

Ho:p=py for 1<i<k,
Hi:p=py for 1<i<ky—1 and
w=p for ko<i<k, (17)

where the time instant kg is unknown. pg is the mean of
{#i}i=1,2,... when no meal is ingested, and p; is the mean
of z when the variable z is under the effect of meal. The
time sample kg is the onset of change in z. The CUSUM
test detects a change whenever it accepts Hi. For testing
the hypotheses, we use the recursive form of the CUSUM
decision function defined as

g(k) = max (0, gk —1) +ex — po — ’g) (18)
The CUSUM change detection test is:
If g(k)<h accept  Ho,
If g(k)>h accept  Hj. (19)

The threshold A is defined as h = hé?/3, where & is the
empirical estimates of o (Blanke et al., 2006). 5 is twice
the absolute change magnitude from pg to pp that one
wishes to detect as a meal. h is a positive threshold which
is a tuning parameter of the CUSUM algorithm. Blanke et
al.(Blanke et al., 2006) describes a method for the optimal
tuning of A for the CUSUM test. The initial value of g is
set to g(—1) = 0.

Estimating the meal onset time  The CUSUM algorithm
can estimate the time, ty, which is the onset of change
in the KF innovation. The time instant, kg, corresponds
to to in discrete time, i.e., tg = koAt, where At is the
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sensor sampling time. If H; is accepted, the CUSUM
algorithm gives an estimate of ko as ko = ko — N(ka).
The count, N, is the number of successive observations
for which the decision function g remains strictly positive
and is computed as N(k) = N(k—1) 1yk—1)>0} + 1. The
time that a meal starts to increase CGM approximately
coincides with the onset of change in the innovation signal.
Therefore, an estimate of kg gives an estimate of the onset
of the meal-related rise in the CGM signal. The time, k,, is
the instant that the CUSUM algorithm detects the change,
i.e., the time for which g(k) crosses the threshold h. We
assume that the onset of the detected meal is the same as
the onset of change in the innovation, and therefore, an
estimate of the meal onset time, l%s, is

ky = ko. (20)

2.7 Meal detection and CHO estimation

The algorithm uses two tests to announce a meal, 1) a
CUSUM test on e and 2) a comparison with a threshold
applied on gy k). If the CUSUM test accepts #H; in (19)
at time, kq, and gy g, |k, > ha, the meal detector goes
to the next step. The threshold, hg, is the maximum of
Qg1 gk 0 the tuning interval,

hd :max{ﬂdljkwk: 172a-~~7ktuning}~ (21)
The interval is the same as the tuning interval for the
CUSUM test, which is the first 6 hours (nighttime) of the
data where the patient does not ingest any meal. If both
tests detect a change (the CUSUM test accepts H; and
Ug1 ko |k, > ha), then a fixed-interval RTS smoother esti-
mates Ugy ik, i0 the interval between the estimated change

onset, l%s, and the detection instant, k,. For estimating the
amount of CHO in the meal, the algorithm integrates the
smoothed estimates, 4y |k, , as follows.

ka—1
CHO =" gy kji, At.
k=k,

(22)

If CHO > 20 g, the algorithm announces a meal and it
saves CHO as the estimated meal-size and saves k& as the
estimated meal onset. The meal detector allows detection
of a new meal if the time elapsed from the ending of the
previously detected meal is at least 2 h.

2.8 Meal insulin bolus calculator (BC)

In order to evaluate the efficacy of the meal detector for
BG regulation, we combine it with a BC. We develop a
BC which is adapted to the meal detector. The BC works
as follows. The algorithm detects a meal and estimates the
meal-size at time, ¢,, according to (22).

The bolus insulin to be given at time ¢, is computed by

o CHO y(ta) — BGtarget
- CIR ISF ’
where y(t,) = y, is the noisy CGM measurement at time
t, corresponding to sample, k,. The term, (C’HO)/CIR,
covers the meal, while a(y(to) —BGtarget) /I SF' corrects for
the deviation from the target BG level. The coefficient, «,
is a tuning parameter. The structure is similar to a normal
bolus calculator when the meal is announced (Boiroux

ﬁ],bolus (ta) (23)

et al., 2017a). The key modification is that (23) accounts
for the fact that the meal is detected and estimated some
time after it is taken, i.e. t, > t,.

2.9 Nocturnal BG regulation with MPC

During nighttime (00:00 h - 6:00 h), an MPC adjusts
the basal insulin rate. In each time sample, an MPC
algorithm solves an open-loop optimal control problem and
implements only the control action corresponding to the
first sample interval in the closed loop. The optimal control
problem solved in each sample interval is

min o, (24a)
RSN NBIRIY S\
s.t.
Tppie = ArZpp—1 + Brig g + Key, (24b)
Trp14jk = ArTpqjk + Brig gk, Jj=1,...,N =1,
(24c¢)
Ur14jik = Crigsrrje J=1,.., N, (24d)
UT, min < aI,k+j|k < UT max, j=0,.,N—-1, (246)
where the objective function, ¢, is defined as
e e
. . 2 . 2
¢=3 > dktsarm — Frerjrrells + 5 > A Ady gl
§=0 §=0
(25)
e is the Kalman filter innovation and K is the filter gain.
Ul,min = —UIss, Where ur g is the steady-state basal

insulin rate. The matrices Ay, By, and C; are obtained
from the insulin transfer function. ., and the BG
target trajectory, r, are defined in Boiroux et al. (2017a).

3. RESULTS AND DISCUSSION

We use 9 virtual T1D patients in Kanderian et al. (2009)
(patients 1 to 10 excluding patient 2). The simulation time
is 36 hours for each patient starting from 12 midnight
(0:00 h) of the first day and ending at 12 noon of the
next day. The virtual patients take five meals including
breakfast (for two days), lunch, dinner, and snack. For
all simulations, during nighttime (0:00 h - 6:00 h) an
MPC adjusts the basal insulin delivery rate. The MPC
is off during daytime and the basal-bolus insulin therapy
regulates the BG concentration. For all simulations in the
paper, a = 0.5 in (23), and the duration of the postbolus
basal insulin suspension is two hours.

Fig. 2 shows an example of comparing regular basal-bolus
therapy with the modified basal-bolus therapy (suspending
basal insulin for two hours after each bolus) when using
meal detector for both cases. A meal detector that works
based on the CGM signal has an inevitable detection
delay. Therefore at meal detection time, which is naturally
delayed with respect to the actual meal onset, the BG
concentration is already elevated and the CHO in the meal
has partially exerted its effect on BG. When the patient
takes a bolus insulin at meal detection time, the slow
insulin action can cause a late postprandial hypoglycemia.
The postbolus suspension of basal insulin that occurs in
the modified basal-bolus insulin delivery reduces the risk
of the late postprandial hypoglycemia. During daytime,
for the intervals that the basal insulin is not suspended,
the basal insulin, uy s, is computed from the steady state
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Fig. 2. Example of BG control with modified basal-bolus
and the regular basal-bolus methods. For both cases,
the meal detector detects the meals and the bolus
calculator gives the meal boluses according to the cal-
culated meal size. In the modified basal-bolus method,
first a bolus is calculated for each meal and then the
basal insulin rate is blocked for two hours after the
bolus. The middle plot is the basal insulin rates. An
MPC regulates the basal insulin rate during nighttime
(00:00 h - 6:00 h).

calculation of the virtual patient. In practise, clinicians
determine an optimal basal insulin rate for BG regulation.

Table 1 presents the meal detection results for the patients.
t, is the time at which meal is detected, t5 is the actual
meal onset, i, is the estimated meal onset, and CHO is
the estimated CHO of the meal. Table 2 compares the
consensus glycemic outcomes (Maahs et al., 2016; Monnier
et al., 2017) in three cases: 1) with meal detector in use, 2)
with meal announcement with correct timing and correct
CHO size, and 3) without any meal insulin bolus.

Table 1 indicates that in general, the meal detector un-
derestimates the meal size. As Table 2 shows, the meal
detector does not increase the percentage of time in hy-
poglycemia compared to the meal announcement case.
This is indicative of safety of the proposed meal detection
algorithm.

4. CONCLUSIONS

We developed a meal detection algorithm and a combined
bolus calculator for postprandial blood glucose regulation.

—Meal flags
|—Indicator of detected meal

|” |==Blood glucose concentration
[—CGM

300 -
2250 -
2
~200
A AR A \

100 (Y VTP AN

0
00:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 00:00 3:00 6:00 9:00 12:00
Time of the day (h)

>
Insulin (IU/min)

0
00:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 00:00 3:00 6:00 9:00 12:00
Time of the day (h)

Fig. 3. Example of meal detection for a virtual type 1
diabetes patient.

For the overnight BG control, we used an MPC algorithm
that adjusts the rate of basal insulin. The meal detection
method is based on a KF and a CUSUM change detector.
The meal detector could reduce the mean glucose level
without increasing the time in hypoglycemia.
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Table 1. Meal detection performance for 9 virtual T1D patients (13.5 days and 45 meals).
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