29 research outputs found

    Thermal and luminescent properties of M2Zn(VO3) 4 (M = Rb, Cs)

    Full text link
    We have developed processes for the synthesis of the Rb 2Zn(VO3)4 and Cs2Zn(VO 3)4 tetrametavanadates. Rb2Zn(VO 3)4 has been prepared by solid-state reaction (350 C) between presynthesized RbVO3 and ZnV2O6 powders, and Cs2Zn(VO3)4 has been prepared by the Pechini method (sol-gel process). Both metavanadates crystallize in monoclinic symmetry (sp. gr. P21/m). Thermochemical characterization results demonstrate that the vanadates undergo complex transformations during heating to 450 C and subsequent cooling. As a result, the materials are in a nonequilibrium state at room temperature and consist of both the parent double metavanadates and their peritectic decomposition products. We believe that the formation of the structure of the M2Zn(VO3)4 compounds from their melts is a kinetically hindered process. These compounds are structurally stable only at temperatures below 369 (Rb2Zn(VO 3)4) or 420 C (Cs2Zn(VO3) 4). We have measured for the first time the diffuse reflectance and photoluminescence excitation spectra of the two tetrametavanadates in their emission range and their photoluminescence spectra at various excitation wavelengths and determined their chromaticity coordinates. Their X-ray luminescence and scintillation decay characteristics have been determined for the first time under pulsed electron beam excitation. The electron excitation dissipation processes in the cesium and rubidium compounds are shown to be similar. We discuss the origin of the emission bands in the mixed vanadates and their potential application areas. Β© 2013 Pleiades Publishing, Ltd

    Time-Resolved Vacuum Ultraviolet Spectroscopy of Er3+ ions in the SrF2 Crystal

    Full text link
    The photoluminescence and photoexcitation spectra as well as the luminescence decay kinetics of Er3+ ions in the visible ultraviolet and vacuum ultraviolet (VUV) regions have been studied by the method of low-temperature, time-resolved VUV-spectroscopy on excitation by synchrotron radiation. In the VUV spectral region of the luminescence of SrF2:1% Er3+, the 146.5-nm band with a time of decay of less than 0.6 nsec was revealed together with the well-known emission band at 164.3 nm (decay constant in the microsecond range). Its possible nature is discussed. The specific features of the formation of photoexcitation spectra of the f-f and f-d transitions in the Er3+ ion are considered. Competition between the processes of excitation of f-f and d-f luminescence has been revealed. It manifests itself in the inverse relationship of their photoexcitation spectra in a range of energies of incident photons that are close to the position of the 4fn-15d configuration levels. Β© 2005 Springer Science+Business Media, Inc.This work was carried out with the support of grants from the Russian Fundamental Research Foundation (05-02-16530), "Universities of Russia (UR 02.01.433), Ural Scientific Center Promising Materials" CRDF (EK-005-XI), and partially from BMBF (05KS8GMD/1)

    Vacuum Ultraviolet Excitation of Rare-Earth ion Luminescence in Strontium Fluoride Crystals

    Full text link
    The photoexcitation spectra (70-280 nm) of the Eu 3+, Tb 3+, Dy 3+, Er 3+, and Tm 3+ ion luminescence in strontium fluoride crystals are studied at 8 and 295 K by vacuum ultraviolet spectroscopy using synchrotron-radiation excitation. The processes of transfer of the excitation energy to the impurity centers as well as the relaxation mechanisms of the excited high-energy states of the rare-earth ions are analyzed. The bands corresponding to the interconfiguration 4f-5d transitions and the charge-transfer bands are identified in the photoexcitation luminescence spectra. Β©2005 Springer Science+Business Media, Inc.The present work was supported in part by the Russian Foundation for Basic Research (Grant 05-02-16530), by the Program β€œRussian Universities” (Grant UR.02.01.433), by REC-005 (Π•Πš-005-XI), and BMBF (05KS8GMD/1)

    Structure and luminescent properties of Cs2Sr(VO3)(4): Mn2+

    Full text link
    We have developed a procedure for thermally stimulated synthesis of a cesium strontium metavanadate, Cs 2Sr(VO 3) 4:Mn 2+ (0.01, 0.50, 1.00, 5.00 at % Mn 2+), using MnO-containing starting mixtures. The EPR spectrum of the material containing 0.01 at % Mn 2+ shows a hyperfine structure due to the incorporation of a small amount of manganese into the diamagnetic double metavanadate host. The luminescent and optical properties of Cs 2Sr(VO 3) 4:Mn 2+ depend on manganese content. In contrast to higher doping levels, doping with 0.01 at % Mn 2+ increases the integrated emission intensity of the vanadate by 10% and improves its chromaticity characteristics (approaching them to those of white light). We assume that this is due to the reduction in the density of vacancy-type growth defects, such as oxygen vacancies. Β© Pleiades Publishing, Ltd., 2012

    RESEARCHING THE PROCESS OF HOLLOW PROFILE SETTING- PRESSING OF A COMPOSITE MATERIAL BASED ON METALLIC POWDERS

    No full text
    The paper presents the researching processes of hollow profile setting-pressing of a composite material based on "iron-copper" metallic powders and the improving of the quality by increas- ing the homogeneity of properties

    INORGANIC SCINTILLATOR

    Full text link
    FIELD: selective detection and displaying of heavy-density pulse electron beams in background Ξ±-, Ξ²-, Ξ³ radiation of nuclides, in particular, for electron beams generated by heavy-current amplifiers of electrons. SUBSTANCE: method involves usage of semiconductor crystals of HgI2 (red tetragonal modification) as inorganic scintillator.EFFECT: increased efficiency for detection of heavy-density electron beams, practical insensitivity to Ξ±-, Ξ²-, Ξ³- radiation of nuclides.ИспользованиС: Π² качСствС ΠΈΠ·Π±ΠΈΡ€Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€Π° для Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈ эффСктивной рСгистрации ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½Ρ‹Ρ… ΠΏΡƒΡ‡ΠΊΠΎΠ² элСктронов высокой плотности Π½Π° Ρ„ΠΎΠ½Π΅ Ξ±-, Ξ²-, Ξ³ - ядСрных ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠΉ Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² частности, для Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈ рСгистрации элСктронных ΠΏΡƒΡ‡ΠΊΠΎΠ², создаваСмых ΡΠΈΠ»ΡŒΠ½ΠΎΡ‚ΠΎΡ‡Π½Ρ‹ΠΌΠΈ ускоритСлями элСктронов Π½Π°Π½ΠΎ- ΠΈ пикосСкундного Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°. Π‘ΡƒΡ‰Π½ΠΎΡΡ‚ΡŒ изобрСтСния: ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ извСстных ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²Ρ‹Ρ… кристаллов ΠΈΠΎΠ΄ΠΈΠ΄Π° Ρ€Ρ‚ΡƒΡ‚ΠΈ HgI2 (красной Ρ‚Π΅Ρ‚Ρ€Π°Π³ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ) Π² качСствС нСорганичСского сцинтиллятора, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰Π΅Π³ΠΎ высокой сцинтилляционной ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ CΠΎΡ‚Π½ ΠΏΡ€ΠΈ рСгистрации элСктронных ΠΏΡƒΡ‡ΠΊΠΎΠ² высокой плотности ΠΈ практичСски Π½Π΅ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΊΠ°ΠΊ сцинтиллятор ΠΊ ядСрным Ξ±-, Ξ²-, Ξ³- излучСниям Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ²

    EMF in lithium hydride crystals

    No full text

    METHOD OF COLORING NATURAL BERYL CRYSTALS AND ARTICLES MADE THEREFROM

    Full text link
    FIELD: gem treatment. SUBSTANCE: method of coloring natural beryl crystals and articles (jeweler's insertions) to improve their color (simulation of emerald) involves irradiation of natural beryl crystals with ionizing radiation and heat treatment and is distinguished with that thermally treated crystals are submitted to a secondary irradiation, the both irradiation steps being effected with 6-8 MeV electron beam at fluency 10 15-2,5β€’1016 electrons per 1 sq.cm, whereas heat treatment is carried out via slow heating and cooling (2-2.5 deg./h) and exposure to 160-170 C for 1-2 h. EFFECT: improved quality of color.ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ способ ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΡ кристаллов ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π±Π΅Ρ€ΠΈΠ»Π»Π° ΠΈ ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ ΠΈΠ· Π½ΠΈΡ… /ΡŽΠ²Π΅Π»ΠΈΡ€Π½Ρ‹Ρ… вставок/ для ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡ качСства ΠΈΡ… окраски - ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ΄ ΠΈΠ·ΡƒΠΌΡ€ΡƒΠ΄. Бпособ Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ ΠΎΠ±Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ кристаллов ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π±Π΅Ρ€ΠΈΠ»Π»Π° ΠΈΠΎΠ½ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌ ΠΈ ΠΈΡ… Ρ‚Π΅Ρ€ΠΌΠΎΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΡƒ ΠΈ отличаСтся Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Ρ‚Π΅Ρ€ΠΌΠΎΠΎΠ±Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Π΅ кристаллы ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π°ΡŽΡ‚ Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½ΠΎΠΌΡƒ ΠΎΠ±Π»ΡƒΡ‡Π΅Π½ΠΈΡŽ, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎΠ΅ ΠΈ Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½ΠΎΠ΅ ΠΎΠ±Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ проводят элСктронным ΠΏΡƒΡ‡ΠΊΠΎΠΌ с энСргиСй 6-8 ΠœΡΠ’ ΠΈ Ρ„Π»ΡŽΠ΅Π½ΡΠΎΠΌ 1015 - 2,5 β€’ 1016 элСктрон /см2/ ΠΏΡ€ΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΎΠ±Π»ΡƒΡ‡Π΅Π½ΠΈΠΈ/, Π° Ρ‚Π΅Ρ€ΠΌΠΎΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΡƒ Π²Π΅Π΄ΡƒΡ‚ ΠΌΠ΅Π΄Π»Π΅Π½Π½Ρ‹ΠΌ Π½Π°Π³Ρ€Π΅Π²ΠΎΠΌ ΠΈ ΠΎΡ…Π»Π°ΠΆΠ΄Π΅Π½ΠΈΠ΅ΠΌ /2-2,5 Π³Ρ€Π°Π΄/час/ с Π²Ρ‹Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ ΠΏΡ€ΠΈ 160-170oC Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 1-2 часов
    corecore