763 research outputs found

    Antioxidant Capacities and Phenolic Levels of Different Varieties of Serbian White Wines

    Get PDF
    The biologically active compounds in wine, especially phenolics, are responsible for reduced risk of developing chronic diseases (cardiovascular disrease, cancer, diabetes, etc.), due to their antioxidant activities. We determined the contents of total phenolics (TP) and total flavonoids (TF) in selected Serbian white wines by colorimetric methods. Total antioxidant activity (TAA) of the white wines was analyzed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity assay. Međaš beli had the highest content of TP, TF and TAA. The radical scavenging capacity (RSC) and total antioxidant activity (TAA) of white wines were 15.30% and 1.055 mM Trolox equivalent, respectively. Total phenolic (TP) and total flavonoid (TF) contents in white wines ranged from 238.3 to 420.6 mg gallic acid equivalent per L of wines and 42.64 to 81.32 mg catechin equivalent per L of wines, respectively. A high and significant correlation between antioxidant activity and total phenolic content was determined in wines (R2 = 0.968, p < 0.01). For the individual polyphenols determination we used a high performance liquid chromatography (HPLC)-diode array detection (DAD) technique. The majority of white wine polyphenols was represent by four hydroxycinnamic acids (HCAs)

    Collisional properties of cold spin-polarized nitrogen gas: theory, experiment, and prospects as a sympathetic coolant for trapped atoms and molecules

    Get PDF
    We report a combined experimental and theoretical study of collision-induced dipolar relaxation in a cold spin-polarized gas of atomic nitrogen (N). We use buffer gas cooling to create trapped samples of 14N and 15N atoms with densities 5+/-2 x 10^{12} cm-3 and measure their magnetic relaxation rates at milli-Kelvin temperatures. Rigorous quantum scattering calculations based on accurate ab initio interaction potentials for the 7Sigma_u electronic state of N2 demonstrate that dipolar relaxation in N + N collisions occurs at a slow rate of ~10^{-13} cm3/s over a wide range of temperatures (1 mK to 1 K) and magnetic fields (10 mT to 2 T). The calculated dipolar relaxation rates are insensitive to small variations of the interaction potential and to the magnitude of the spin-exchange interaction, enabling the accurate calibration of the measured N atom density. We find consistency between the calculated and experimentally determined rates. Our results suggest that N atoms are promising candidates for future experiments on sympathetic cooling of molecules.Comment: 48 pages, 17 figures, 3 table

    Performance Analysis of One Model of Communication and Information System in Military Operation

    Get PDF
    This paper presents a model of communication and information system in military operations. Here OPNET MODELER simulation package is applied because it is suitable for network modelling, topology and capacity planning. Simulation of different types of IP traffic and monitor their performance to optimise the functionality of network elements, management performance network applications, and as well as in research and development of new network technologies. Application of the method of mass service are determined by the capacity needed for voice transmission on the links in the model and using the OPNET MODELER simulation program are analysed performance modeled communication information system in data transmission. The results of the simulation are presented through target the service settings: workload links communication and information system, e-mail download response time, http page download response time and packet loss in data transfer. The aim of the research has shown that modeled communication information system with defined elements (nodes), the capacity of links (according to the specification of telecommunication devices) and defined traffic can respond to the requirements of command forces in the military operation in terms of telecommunication service. The results of the analysed service target parameters show that modeled communication and information system provides an efficient flow of information and the tra nsfer of voice and IP data for the needs of command and control in military operations

    Numerical study of oil spill in the Patos lagoon under flood and ebb conditions

    Get PDF
    Facing great obstacles to eradicate environmental hazards generated by oil spills, it is crucial to establish actions against such accidents. In this context, the focus of this study is to analyze oil spills at the harbor region of Rio Grande, Rio Grande do Sul. The Easy Coupling Oil System (ECOS) model was used to model the oil spills under different environmental conditions simulated by the hydrodynamic model Telemac-3D, with the intention to identify the main forces controlling the movement of the oil slicks over a year of averaged hydrodynamic conditions from 2003 to 2015. The computational domain comprises the Patos Lagoon, the harbor area of Rio Grande and the Southern Brazilian Shelf. For the oil spill simulations, eight distinct events were defined considering both flood and ebb conditions in the estuarine region of the Patos Lagoon. The oil spill simulations showed that, in ebb conditions, the oil slick movement is mainly ruled by the currents, moving towards the outflow. After a few hours, the wind action makes the slick move towards the margins of the waterway. In flood conditions, on the other hand, the oil slick drifts to the interior of the estuary, following the dominant currents and the local winds

    Stable One-Dimensional Dissipative Solitons in Complex Cubic-Quintic Ginzburg-Landau Equation

    Get PDF
    The generation and nonlinear dynamics of one-dimensional optical dissipative solitonic pulses are examined. The variational method is extended to complex dissipative systems, in order to obtain steady state solutions of the (1 + 1)-dimensional complex cubic-quintic Ginzburg-Landau equation. A stability criterion is established fixing a domain of dissipative parameters for stable steady state solutions. Following numerical simulations, evolution of any input pulse from this domain leads to stable dissipative temporal solitons. Analytical predictions are confirmed by numerical evolution of input temporal pulses towards stable dissipative solitons

    Bacterial porin disrupts mitochondrial membrane potential and sensitizes host cells to apoptosis

    Get PDF
    The bacterial PorB porin, an ATP-binding beta-barrel protein of pathogenic Neisseria gonorrhoeae, triggers host cell apoptosis by an unknown mechanism. PorB is targeted to and imported by host cell mitochondria, causing the breakdown of the mitochondrial membrane potential (delta psi m). Here, we show that PorB induces the condensation of the mitochondrial matrix and the loss of cristae structures, sensitizing cells to the induction of apoptosis via signaling pathways activated by BH3-only proteins. PorB is imported into mitochondria through the general translocase TOM but, unexpectedly, is not recognized by the SAM sorting machinery, usually required for the assembly of beta-barrel proteins in the mitochondrial outer membrane. PorB integrates into the mitochondrial inner membrane, leading to the breakdown of delta psi m. The PorB channel is regulated by nucleotides and an isogenic PorB mutant defective in ATP-binding failed to induce delta psi m loss and apoptosis, demonstrating that dissipation of delta psi m is a requirement for cell death caused by neisserial infection

    Measurement of the neutrino component of an anti-neutrino beam observed by a non-magnetized detector

    Get PDF
    Two independent methods are employed to measure the neutrino flux of the anti-neutrino-mode beam observed by the MiniBooNE detector. The first method compares data to simulated event rates in a high purity \numu induced charged-current single \pip (CC1\pip) sample while the second exploits the difference between the angular distributions of muons created in \numu and \numub charged-current quasi-elastic (CCQE) interactions. The results from both analyses indicate the prediction of the neutrino flux component of the pre-dominately anti-neutrino beam is over-estimated - the CC1\pip analysis indicates the predicted \numu flux should be scaled by 0.76±0.110.76 \pm 0.11, while the CCQE angular fit yields 0.65±0.230.65 \pm 0.23. The energy spectrum of the flux prediction is checked by repeating the analyses in bins of reconstructed neutrino energy, and the results show that the spectral shape is well modeled. These analyses are a demonstration of techniques for measuring the neutrino contamination of anti-neutrino beams observed by future non-magnetized detectors.Comment: 15 pages, 7 figures, published in Physical Review D, latest version reflects changes from referee comment

    A Search for Electron Antineutrino Appearance at the Δm2∼\Delta m^2 \sim 1 eV2\mathrm{eV}^{2} Scale

    Get PDF
    The MiniBooNE Collaboration reports initial results from a search for νˉμ→νˉe\bar{\nu}_{\mu}\to\bar{\nu}_e oscillations. A signal-blind analysis was performed using a data sample corresponding to 3.39×10203.39 \times 10^{20} protons on target. The data are consistent with background prediction across the full range of neutrino energy reconstructed assuming quasielastic scattering, 200<EνQE<3000200 < E_{\nu}^{QE} < 3000 MeV: 144 electron-like events have been observed in this energy range, compared to an expectation of 139.2±17.6139.2 \pm 17.6 events. No significant excess of events has been observed, both at low energy, 200-475 MeV, and at high energy, 475-1250 MeV. The data are inconclusive with respect to antineutrino oscillations suggested by data from the Liquid Scintillator Neutrino Detector at Los Alamos National Laboratory.Comment: 5 pages, 3 figures, 2 table

    Familial atrial fibrillation mutation M1875T-SCN5A increases early sodium current and dampens the effect of flecainide

    Get PDF
    Aims Atrial fibrillation (AF) is the most common cardiac arrhythmia. Pathogenic variants in genes encoding ion channels are associated with familial AF. The point mutation M1875T in the SCN5A gene, which encodes the α-subunit of the cardiac sodium channel Nav1.5, has been associated with increased atrial excitability and familial AF in patients. Methods and results We designed a new murine model carrying the Scn5a-M1875T mutation enabling us to study the effects of the Nav1.5 mutation in detail in vivo and in vitro using patch clamp and microelectrode recording of atrial cardiomyocytes, optical mapping, electrocardiogram, echocardiography, gravimetry, histology, and biochemistry. Atrial cardiomyocytes from newly generated adult Scn5a-M1875T+/− mice showed a selective increase in the early (peak) cardiac sodium current, larger action potential amplitude, and a faster peak upstroke velocity. Conduction slowing caused by the sodium channel blocker flecainide was less pronounced in Scn5a-M1875T+/− compared to wildtype atria. Overt hypertrophy or heart failure in Scn5a-M1875T+/− mice could be excluded. Conclusion The Scn5a-M1875T point mutation causes gain-of-function of the cardiac sodium channel. Our results suggest increased atrial peak sodium current as a potential trigger for increased atrial excitability
    • …
    corecore