19,292 research outputs found

    Spin Susceptibility of the Topological Superconductor UPt3 from Polarized Neutron Diffraction

    Full text link
    Experiment and theory indicate that UPt3 is a topological superconductor in an odd-parity state, based in part from temperature independence of the NMR Knight shift. However, quasiparticle spin-flip scattering near a surface, where the Knight shift is measured, might be responsible. We use polarized neutron scattering to measure the bulk susceptibility with H||c, finding consistency with the Knight shift but inconsistent with theory for this field orientation. We infer that neither spin susceptibility nor Knight shift are a reliable indication of odd-parity

    Lifetimes of C-60(2-) and C-70(2-) dianions in a storage ring

    Get PDF
    C-60(2-) and C-70(2-) dianions have been produced by electrospray of the monoanions and subsequent electron pickup in a Na vapor cell. The dianions were stored in an electrostatic ring and their decay by electron emission was measured up to 1 s after injection. While C-70(2-) ions are stable on this time scale, except for a small fraction of the ions which have been excited by gas collisions, most of the C-60(2-) ions decay on a millisecond time scale, with a lifetime depending strongly on their internal temperature. The results can be modeled as decay by electron tunneling through a Coulomb barrier, mainly from thermally populated triplet states about 120 meV above a singlet ground state. At times longer than about 100 ms, the absorption of blackbody radiation plays an important role for the decay of initially cold ions. The tunneling rates obtained from the modeling, combined with WKB estimates of the barrier penetration, give a ground-state energy 200 +/- 30 meV above the energy of the monoanion plus a free electron and a ground-state lifetime of the order of 20 s. (c) 2006 American Institute of Physics

    Motion clouds: model-based stimulus synthesis of natural-like random textures for the study of motion perception

    Full text link
    Choosing an appropriate set of stimuli is essential to characterize the response of a sensory system to a particular functional dimension, such as the eye movement following the motion of a visual scene. Here, we describe a framework to generate random texture movies with controlled information content, i.e., Motion Clouds. These stimuli are defined using a generative model that is based on controlled experimental parametrization. We show that Motion Clouds correspond to dense mixing of localized moving gratings with random positions. Their global envelope is similar to natural-like stimulation with an approximate full-field translation corresponding to a retinal slip. We describe the construction of these stimuli mathematically and propose an open-source Python-based implementation. Examples of the use of this framework are shown. We also propose extensions to other modalities such as color vision, touch, and audition

    The FIR-absorption of short period quantum wires and the transition from one to two dimensions

    Full text link
    We investigate the FIR-absorption of short period parallel quantum wires in a perpendicular quantizing magnetic field. The external time-dependent electric field is linearly polarized along the wire modulation. The mutual Coulomb interaction of the electrons is treated self-consistently in the ground state and in the absorption calculation within the Hartree approximation. We consider the effects of a metal gate grating coupler, with the same or with a different period as the wire modulation, on the absorption. The evolution of the magnetoplasmon in the nonlocal region where it is split into several Bernstein modes is discussed in the transition from: narrow to broad wires, and isolated to overlapping wires. We show that in the case of narrow and not strongly modulated wires the absorption can be directly correlated with the underlying electronic bandstructure.Comment: 15 pages, 9 figures, Revtex, to appear in Phys. Rev.

    Modelling the evaporation of thin films of colloidal suspensions using Dynamical Density Functional Theory

    Get PDF
    Recent experiments have shown that various structures may be formed during the evaporative dewetting of thin films of colloidal suspensions. Nano-particle deposits of strongly branched `flower-like', labyrinthine and network structures are observed. They are caused by the different transport processes and the rich phase behaviour of the system. We develop a model for the system, based on a dynamical density functional theory, which reproduces these structures. The model is employed to determine the influences of the solvent evaporation and of the diffusion of the colloidal particles and of the liquid over the surface. Finally, we investigate the conditions needed for `liquid-particle' phase separation to occur and discuss its effect on the self-organised nano-structures

    Coherent Quantum-Noise Cancellation for Optomechanical Sensors

    Full text link
    Using a flowchart representation of quantum optomechanical dynamics, we design coherent quantum-noise-cancellation schemes that can eliminate the back-action noise induced by radiation pressure at all frequencies and thus overcome the standard quantum limit of force sensing. The proposed schemes can be regarded as novel examples of coherent feedforward quantum control.Comment: 4 pages, 5 figures, v2: accepted by Physical Review Letter

    Derivation of the nonlinear fluctuating hydrodynamic equation from underdamped Langevin equation

    Full text link
    We derive the fluctuating hydrodynamic equation for the number and momentum densities exactly from the underdamped Langevin equation. This derivation is an extension of the Kawasaki-Dean formula in underdamped case. The steady state probability distribution of the number and momentum densities field can be expressed by the kinetic and potential energies. In the massless limit, the obtained fluctuating hydrodynamic equation reduces to the Kawasaki-Dean equation. Moreover, the derived equation corresponds to the field equation derived from the canonical equation when the friction coefficient is zero.Comment: 16 page

    Magnetic ground state and magnon-phonon interaction in multiferroic h-YMnO3_3

    Get PDF
    Inelastic neutron scattering has been used to study the magneto-elastic excitations in the multiferroic manganite hexagonal YMnO3_3. An avoided crossing is found between magnon and phonon modes close to the Brillouin zone boundary in the (a,b)(a,b)-plane. Neutron polarization analysis reveals that this mode has mixed magnon-phonon character. An external magnetic field along the cc-axis is observed to cause a linear field-induced splitting of one of the spin wave branches. A theoretical description is performed, using a Heisenberg model of localized spins, acoustic phonon modes and a magneto-elastic coupling via the single-ion magnetostriction. The model quantitatively reproduces the dispersion and intensities of all modes in the full Brillouin zone, describes the observed magnon-phonon hybridized modes, and quantifies the magneto-elastic coupling. The combined information, including the field-induced magnon splitting, allows us to exclude several of the earlier proposed models and point to the correct magnetic ground state symmetry, and provides an effective dynamic model relevant for the multiferroic hexagonal manganites.Comment: 12 pages, 10 figure

    A New Process-Based Soil Methane Scheme:Evaluation Over Arctic Field Sites With the ISBA Land Surface Model

    Get PDF
    Permafrost soils and arctic wetlands methane emissions represent an important challenge for modeling the future climate. Here we present a process-based model designed to correctly represent the main thermal, hydrological, and biogeochemical processes related to these emissions for general land surface modeling. We propose a new multilayer soil carbon and gas module within the Interaction Soil-Biosphere-Atmosphere (ISBA) land-surface model (LSM). This module represents carbon pools, vertical carbon dynamics, and both oxic and anoxic organic matter decomposition. It also represents the soil gas processes for CH4, CO2, and O2 through the soil column. We base CH4 production and oxydation on an O2 control instead of the classical water table level strata approach used in state-of-the-art soil CH4 models. We propose a new parametrization of CH4 oxydation using recent field experiments and use an explicit O2 limitation for soil carbon decomposition. Soil gas transport is computed explicitly, using a revisited formulation of plant-mediated transport, a new representation of gas bulk diffusivity in porous media closer to experimental observations, and an innovative advection term for ebullition. We evaluate this advanced model on three climatically distinct sites : two in Greenland (Nuuk and Zackenberg) and one in Siberia (Chokurdakh). The model realistically reproduces methane and carbon dioxide emissions from both permafrosted and nonpermafrosted sites. The evolution and vertical characteristics of the underground processes leading to these fluxes are consistent with current knowledge. Results also show that physics is the main driver of methane fluxes, and the main source of variability appears to be the water table depth

    Suppression of hole-hole scattering in GaAs/AlGaAs heterostructures under uniaxial compression

    Full text link
    Resistance, magnetoresistance and their temperature dependencies have been investigated in the 2D hole gas at a [001] p-GaAs/Al0.5_{0.5}Ga0.5_{0.5}As heterointerface under [110] uniaxial compression. Analysis performed in the frame of hole-hole scattering between carriers in the two spin splitted subbands of the ground heavy hole state indicates, that h-h scattering is strongly suppressed by uniaxial compression. The decay time Ď„01\tau_{01} of the relative momentum reveals 4.5 times increase at a uniaxial compression of 1.3 kbar.Comment: 5 pages, 3 figures. submitted to Phys.Rev.
    • …
    corecore