56 research outputs found

    Smaller Regional Gray Matter Volume in Homeless African American Cocaine-Dependent Men: A Preliminary Report

    Get PDF
    Models of addiction include abnormalities in parts of the brain involving executive function/inhibitory control. Although previous studies have reported evidence of structural abnormalities in cocaine-dependent individuals, none have specifically targeted the homeless. The present preliminary study investigated brain structure in such an understudied group, homeless, crack-cocaine-dependent African American men (n = 9), comparing it to that in healthy controls (n = 8). Structural data were analyzed using voxel based morphometry (VBM) and a regions of interest (ROI) analysis. Homeless cocaine-dependent individuals had smaller gray matter volume in dorsolateral prefrontal cortex, anterior cingulate, the cerebellum, insula, and superior temporal gyrus. Most of these areas subserve executive function or inhibitory control. These results are similar to those found in most previous studies of non-homeless cocaine-dependent individuals. Reduced gray matter in executive function/inhibitory control regions of the brain in cocaine-dependent individuals may be a preexisting risk factor for the development of addiction and/or a consequence of drug abuse

    Formation of a Silicate L 3 Phase with Continuously Adjustable Pore Sizes

    Get PDF
    the magnitude of the gain. Thus, the delay time of ϳ0.5 s observed in REFERENCES AND NOTES ___________________________ Since the demonstration that surfactants could be used in the fabrication of silica mesophases (1), amphiphiles have been used to produce inorganic materials with a variety of mesomorphic structures, including lamellar, hexagonally packed tubular, and cubic forms (2-12). Surfactant-induced assembly of inorganic structures is now recognized as a way to make novel nanoporous materials with larger pore sizes than was previously possible. However, techniques developed thus far have limited capability to produce very large pores of a predetermined size. Here we describe the synthesis and characterization of a new, random, bicontinuous silicate mesomorph for which predetermined pore sizes, over a very large size range, may be obtained. Most procedures for forming mesoporous silicates rely on the micelle-forming properties of a surfactant, typically at a low surfactant concentration. The addition of an inorganic precursor, such as an alkoxysilane, leads to association and coassembly into a mesophase precipitant whose structural dimensions are controlled by the surfactant length. Polymerization of the inorganic precursor and removal of the surfactant results in a rigid silica shell conforming to the structural shape of the mesophase. However, the use of dilute surfactant solutions limits the ability to predict the topology of the mesophase. Also, the typical product of the process is a powder of micrometer-sized particles, thereby limiting uses in filtration, optical, or electronic applications, where large-area thin films or large uniform monoliths of material are required. Finally, the pore volume is filled with surfactant; that is, the surfactant must be removed before the pores can be accessed. These difficulties may be partially avoided by the use of high-concentration surfactant systems in which either the inorganic precursors minimally perturb a preexisting surfactant-water liquid crystalline (LC) structure or the LC nature of the system may be recovered under appropriate experimental conditions, as shown by Attard et al. (6). Also, because the inorganic precursor does not precipitate out of solution, the resultant material conforms to the shape of the container in which it forms, thereby allowing fabrication of large monoliths of a desired size and shape. However, even in these cases, the pore size is limited by the surfactant and the limited range of compositions on the phase diagram for a given mesomorphic structure. Applications of silicate mesophases as filtration media, optical materials, and nanocomposites would be facilitated if th

    Basic Properties of SS-PARSE Parameter Estimates

    No full text

    Baseline Conditions and Subtractive Logic in

    No full text
    Abstract: Discrepancies in the patterns of cortical activation across studies may be attributable, in part, to differences in baseline tasks, and hence, reflect the limits of the subtractive logic underlying much of neuroimaging. To assess the extent of these effects, three of the most commonly used baseline conditions (rest, tone monitoring, and passive listening) were compared using phoneme discrimination as the experimentaltask.EightparticipantswerestudiedinafMRIstudywitha4.1Tsystem.Thethreebaseline conditions systematically affected the amount of activation observed in the identical phoneme task with major affects in Broca’s area, the left posterior superior temporal gyrus, and the left and right inferior parietal regions. Two central findings were: 1) adifferential effect of baseline within each region, with the rest baseline condition producing the greatest amount of activation and the passive listening condition producingtheleast,and2)systematicbaselinetaskactivationintheinferiorparietalregions.Theseresults emphasize the relativity of activation patterns observed in functional neuroimaging, and the necessity to specify the baseline processes in context to the experimental task processes. Hum. Brain Mapping 14
    corecore