2,727 research outputs found

    Alien Registration- St Pierre, John B. (Milford, Penobscot County)

    Get PDF
    https://digitalmaine.com/alien_docs/8040/thumbnail.jp

    Alien Registration- St Pierre, Jen B. (Auburn, Androscoggin County)

    Get PDF
    https://digitalmaine.com/alien_docs/30337/thumbnail.jp

    Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1α : modulation by p38 MAPK

    Get PDF
    The transcriptional coactivator PPAR gamma coactivator 1 α (PGC-1α) is a key regulator of metabolic processes such as mitochondrial biogenesis and respiration in muscle and gluconeogenesis in liver. Reduced levels of PGC-1α in humans have been associated with type II diabetes. PGC-1α contains a negative regulatory domain that attenuates its transcriptional activity. This negative regulation is removed by phosphorylation of PGC-1α by p38 MAPK, an important kinase downstream of cytokine signaling in muscle and β-adrenergic signaling in brown fat. We describe here the identification of p160 myb binding protein (p160MBP) as a repressor of PGC-1α. The binding and repression of PGC-1α by p160MBP is disrupted by p38 MAPK phosphorylation of PGC-1α. Adenoviral expression of p160MBP in myoblasts strongly reduces PGC-1α's ability to stimulate mitochondrial respiration and the expression of the genes of the electron transport system. This repression does not require removal of PGC-1α from chromatin, suggesting that p160MBP is or recruits a direct transcriptional suppressor. Overall, these data indicate that p160MBP is a powerful negative regulator of PGC-1α function and provide a molecular mechanism for the activation of PGC-1α by p38 MAPK. The discovery of p160MBP as a PGC-1α regulator has important implications for the understanding of energy balance and diabetes

    Di[2,6-bis(5-phenylpyrazol-3-yl)pyridine]Co(II): an old coordination mode fora novel supramolecular assembly

    Get PDF
    CoCl2 was treated with 1, 2, and 6 eq. of 2,6-bis(5-phenylpyrazol-3-yl)pyridine (H2L) yielding respectively the monosubstituted [Co(H2L)Cl2], the disubstituted [Co(H2L)2][PF6]2, and a supramolecular assembly formed by a central disubstituted octahedral complex and four more hydrogen bonded peripheral ligands, [{Co(H2L)2}(H2L)4][PF6]2, as illustrated by X-ray crystal structure analysis

    Neutron to proton ratios of quasiprojectile and midrapidity emission in the 64^{64}Zn + 64^{64}Zn reaction at 45 MeV/nucleon

    Get PDF
    Simultaneous measurement of both neutrons and charged particles emitted in the reaction 64^{64}Zn + 64^{64}Zn at 45 MeV/nucleon allows comparison of the neutron to proton ratio at midrapidity with that at projectile rapidity. The evolution of N/Z in both rapidity regimes with increasing centrality is examined. For the completely re-constructed midrapidity material one finds that the neutron-to-proton ratio is above that of the overall 64^{64}Zn + 64^{64}Zn system. In contrast, the re-constructed ratio for the quasiprojectile is below that of the overall system. This difference provides the most complete evidence to date of neutron enrichment of midrapidity nuclear matter at the expense of the quasiprojectile

    Functional characterization of a melon alcohol acyl-transferase gene family involved in the biosynthesis of ester volatiles. Identification of the crucial role of a threonine residue for enzyme activity

    Get PDF
    Volatile esters, a major class of compounds contributing to the aroma of many fruit, are synthesized by alcohol acyl-transferases (AAT). We demonstrate here that, in Charentais melon (Cucumis melo var. cantalupensis), AAT are encoded by a gene family of at least four members with amino acid identity ranging from 84% (Cm-AAT1/Cm-AAT2) and 58% (Cm-AAT1/Cm-AAT3) to only 22% (Cm-AAT1/Cm-AAT4). All encoded proteins, except Cm-AAT2, were enzymatically active upon expression in yeast and show differential substrate preferences. Cm-AAT1 protein produces a wide range of short and long-chain acyl esters but has strong preference for the formation of E-2-hexenyl acetate and hexyl hexanoate. Cm-AAT3 also accepts a wide range of substrates but with very strong preference for producing benzyl acetate. Cm-AAT4 is almost exclusively devoted to the formation of acetates, with strong preference for cinnamoyl acetate. Site directed mutagenesis demonstrated that the failure of Cm-AAT2 to produce volatile esters is related to the presence of a 268-alanine residue instead of threonine as in all active AAT proteins. Mutating 268-A into 268-T of Cm-AAT2 restored enzyme activity, while mutating 268-T into 268-A abolished activity of Cm-AAT1. Activities of all three proteins measured with the prefered substrates sharply increase during fruit ripening. The expression of all Cm-AAT genes is up-regulated during ripening and inhibited in antisense ACC oxidase melons and in fruit treated with the ethylene antagonist 1-methylcyclopropene (1-MCP), indicating a positive regulation by ethylene. The data presented in this work suggest that the multiplicity of AAT genes accounts for the great diversity of esters formed in melon

    Steepening Plasma Density Spectra in the Ionosphere: The Crucial Role Played by a Strong E-Region

    Get PDF
    Based on the Swarm 16 Hz Advanced Plasma Density data set, and using the Swarm A satellite, we apply automatic detection of spectral breaks in seven million sampled plasma density power spectra in the high-latitude F-region ionosphere. This way, we survey the presence of plasma irregularity dissipation due to an enhanced E-region conductance, caused both by solar photoionization and particle precipitation. We introduce a new quantity named the steepening slope index (SSI) which we use to estimate the occurrence rate of break-points in sampled plasma densities. We provide an interpretation of SSI in the context of solar photoionization-induced conductance enhancements of the E-region. We present a comprehensive climatology of the SSI occurrence rate, along with statistics documenting characteristic high-latitude plasma density spectra. In the absence of steepening, the typical spectral index is 2.1. When density spectra steepen, the index is typically 1.6 at large scales, and 2.7 at small scales. We discuss the impact of high-energy deeply penetrating electron precipitation in the diffuse aurora, and precipitating electrons in the aurora at large. Here, a key finding is that near the cusp, where the F-region conductance is enhanced, spectra tend not to steepen. We find that both the diffuse and discrete aurora are modulating F-region plasma irregularity dissipation through an enhancement of E-region conductance, highlighting the role played by factors other than solar zenith angle in high-latitude plasma dynamics. The influence of E-region conductance on spectral shapes indicates the need for a new discussion of how particle precipitation can structure the local winter high-latitude F-region ionosphere
    corecore