243 research outputs found

    Experimental cross-polarization detection of coupling far-field light to highly confined plasmonic gap modes via nanoantennas

    Full text link
    We experimentally demonstrate the coupling of far-field light to highly confined plasmonic gap modes via connected nanoantennas. The excitation of plasmonic gap modes is shown to depend on the polarization, position and wavelength of the incident beam. Far-field measurements performed in crossed polarization allow for the detection of extremely weak signals re-emitted from gap waveguides and can increase the signal-to-noise ratio dramatically.Comment: 5 figures; http://apl.aip.org

    Doppler optical frequency domain reflectometry for remote fiber sensing

    Get PDF
    Coherent optical frequency domain reflectometry has been widely used to locate static reflectors with high spatial resolution. Here, we present a new type of Doppler optical frequency domain reflectometry that offers simultaneous measurement of the position and speed of moving objects. The system is exploited to track optically levitated "flying" particles inside a hollow-core photonic crystal fiber. As an example, we demonstrate distributed temperature sensing with sub-mm-scale spatial resolution and a standard deviation of similar to 10 degrees C up to 200 degrees C. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen

    Change of dopamine receptor mRNA expression in lymphocyte of schizophrenic patients

    Get PDF
    BACKGROUND: Though the dysfunction of central dopaminergic system has been proposed, the etiology or pathogenesis of schizophrenia is still uncertain partly due to limited accessibility to dopamine receptor. The purpose of this study was to define whether or not the easily accessible dopamine receptors of peripheral lymphocytes can be the peripheral markers of schizophrenia. RESULTS: 44 drug-medicated schizophrenics for more than 3 years, 28 drug-free schizophrenics for more than 3 months, 15 drug-naïve schizophrenic patients, and 31 healthy persons were enrolled. Sequential reverse transcription and quantitative polymerase chain reaction of the mRNA were used to investigate the expression of D3 and D5 dopamine receptors in peripheral lymphocytes. The gene expression of dopamine receptors was compared in each group. After taking antipsychotics in drug-free and drug-naïve patients, the dopamine receptors of peripheral lymphocytes were sequentially studied 2nd week and 8th week after medication. In drug-free schizophrenics, D3 dopamine receptor mRNA expression of peripheral lymphocytes significantly increased compared to that of controls and drug-medicated schizophrenics, and D5 dopamine receptor mRNA expression increased compared to that of drug-medicated schizophrenics. After taking antipsychotics, mRNA of dopamine receptors peaked at 2(nd) week, after which it decreases but the level was above baseline one at 8(th) week. Drug-free and drug-naïve patients were divided into two groups according to dopamine receptor expression before medications, and the group of patients with increased dopamine receptor expression had more severe psychiatric symptoms. CONCLUSIONS: These results reveal that the molecular biologically-determined dopamine receptors of peripheral lymphocytes are reactive, and that increased expression of dopamine receptor in peripheral lymphocyte has possible clinical significance for subgrouping of schizophrenis

    Value of the First Post-Transplant Biopsy for Predicting Long-Term Cardiac Allograft Vasculopathy (CAV) and Graft Failure in Heart Transplant Patients

    Get PDF
    BACKGROUND: Cardiac allograft vasculopathy (CAV) is the principal cause of long-term graft failure following heart transplantation. Early identification of patients at risk of CAV is essential to target invasive follow-up procedures more effectively and to establish appropriate therapies. We evaluated the prognostic value of the first heart biopsy (median: 9 days post-transplant) versus all biopsies obtained within the first three months for the prediction of CAV and graft failure due to CAV. METHODS AND FINDINGS: In a prospective cohort study, we developed multivariate regression models evaluating markers of atherothrombosis (fibrin, antithrombin and tissue plasminogen activator [tPA]) and endothelial activation (intercellular adhesion molecule-1) in serial biopsies obtained during the first three months post-transplantation from 172 patients (median follow-up = 6.3 years; min = 0.37 years, max = 16.3 years). Presence of fibrin was the dominant predictor in first-biopsy models (Odds Ratio [OR] for one- and 10-year graft failure due to CAV = 38.70, p = 0.002, 95% CI = 4.00-374.77; and 3.99, p = 0.005, 95% CI = 1.53-10.40) and loss of tPA was predominant in three-month models (OR for one- and 10-year graft failure due to CAV = 1.81, p = 0.025, 95% CI = 1.08-3.03; and 1.31, p = 0.001, 95% CI = 1.12-1.55). First-biopsy and three-month models had similar predictive and discriminative accuracy and were comparable in their capacities to correctly classify patient outcomes, with the exception of 10-year graft failure due to CAV in which the three-month model was more predictive. Both models had particularly high negative predictive values (e.g., First-biopsy vs. three-month models: 99% vs. 100% at 1-year and 96% vs. 95% at 10-years). CONCLUSIONS: Patients with absence of fibrin in the first biopsy and persistence of normal tPA in subsequent biopsies rarely develop CAV or graft failure during the next 10 years and potentially could be monitored less invasively. Presence of early risk markers in the transplanted heart may be secondary to ischemia/reperfusion injury, a potentially modifiable factor

    Distinct Mechanisms Underlying Tolerance to Intermittent and Constant Hypoxia in Drosophila melanogaster

    Get PDF
    BACKGROUND: Constant hypoxia (CH) and intermittent hypoxia (IH) occur during several pathological conditions such as asthma and obstructive sleep apnea. Our research is focused on understanding the molecular mechanisms that lead to injury or adaptation to hypoxic stress using Drosophila as a model system. Our current genome-wide study is designed to investigate gene expression changes and identify protective mechanism(s) in D. melanogaster after exposure to severe (1% O(2)) intermittent or constant hypoxia. METHODOLOGY/PRINCIPAL FINDINGS: Our microarray analysis has identified multiple gene families that are up- or down-regulated in response to acute CH or IH. We observed distinct responses to IH and CH in gene expression that varied in the number of genes and type of gene families. We then studied the role of candidate genes (up-or down-regulated) in hypoxia tolerance (adult survival) for longer periods (CH-7 days, IH-10 days) under severe CH or IH. Heat shock proteins up-regulation (specifically Hsp23 and Hsp70) led to a significant increase in adult survival (as compared to controls) of P-element lines during CH. In contrast, during IH treatment the up-regulation of Mdr49 and l(2)08717 genes (P-element lines) provided survival advantage over controls. This suggests that the increased transcript levels following treatment with either paradigm play an important role in tolerance to severe hypoxia. Furthermore, by over-expressing Hsp70 in specific tissues, we found that up-regulation of Hsp70 in heart and brain play critical role in tolerance to CH in flies. CONCLUSIONS/SIGNIFICANCE: We observed that the gene expression response to IH or CH is specific and paradigm-dependent. We have identified several genes Hsp23, Hsp70, CG1600, l(2)08717 and Mdr49 that play an important role in hypoxia tolerance whether it is in CH or IH. These data provide further clues about the mechanisms by which IH or CH lead to cell injury and morbidity or adaptation and survival

    Fluid challenges in intensive care: the FENICE study A global inception cohort study

    Get PDF
    Fluid challenges (FCs) are one of the most commonly used therapies in critically ill patients and represent the cornerstone of hemodynamic management in intensive care units. There are clear benefits and harms from fluid therapy. Limited data on the indication, type, amount and rate of an FC in critically ill patients exist in the literature. The primary aim was to evaluate how physicians conduct FCs in terms of type, volume, and rate of given fluid; the secondary aim was to evaluate variables used to trigger an FC and to compare the proportion of patients receiving further fluid administration based on the response to the FC.This was an observational study conducted in ICUs around the world. Each participating unit entered a maximum of 20 patients with one FC.2213 patients were enrolled and analyzed in the study. The median [interquartile range] amount of fluid given during an FC was 500 ml (500-1000). The median time was 24 min (40-60 min), and the median rate of FC was 1000 [500-1333] ml/h. The main indication for FC was hypotension in 1211 (59 %, CI 57-61 %). In 43 % (CI 41-45 %) of the cases no hemodynamic variable was used. Static markers of preload were used in 785 of 2213 cases (36 %, CI 34-37 %). Dynamic indices of preload responsiveness were used in 483 of 2213 cases (22 %, CI 20-24 %). No safety variable for the FC was used in 72 % (CI 70-74 %) of the cases. There was no statistically significant difference in the proportion of patients who received further fluids after the FC between those with a positive, with an uncertain or with a negatively judged response.The current practice and evaluation of FC in critically ill patients are highly variable. Prediction of fluid responsiveness is not used routinely, safety limits are rarely used, and information from previous failed FCs is not always taken into account

    DNA damage by lipid peroxidation products: implications in cancer, inflammation and autoimmunity

    Get PDF
    Oxidative stress and lipid peroxidation (LPO) induced by inflammation, excess metal storage and excess caloric intake cause generalized DNA damage, producing genotoxic and mutagenic effects. The consequent deregulation of cell homeostasis is implicated in the pathogenesis of a number of malignancies and degenerative diseases. Reactive aldehydes produced by LPO, such as malondialdehyde, acrolein, crotonaldehyde and 4-hydroxy-2-nonenal, react with DNA bases, generating promutagenic exocyclic DNA adducts, which likely contribute to the mutagenic and carcinogenic effects associated with oxidative stress-induced LPO. However, reactive aldehydes, when added to tumor cells, can exert an anticancerous effect. They act, analogously to other chemotherapeutic drugs, by forming DNA adducts and, in this way, they drive the tumor cells toward apoptosis. The aldehyde-DNA adducts, which can be observed during inflammation, play an important role by inducing epigenetic changes which, in turn, can modulate the inflammatory process. The pathogenic role of the adducts formed by the products of LPO with biological macromolecules in the breaking of immunological tolerance to self antigens and in the development of autoimmunity has been supported by a wealth of evidence. The instrumental role of the adducts of reactive LPO products with self protein antigens in the sensitization of autoreactive cells to the respective unmodified proteins and in the intermolecular spreading of the autoimmune responses to aldehyde-modified and native DNA is well documented. In contrast, further investigation is required in order to establish whether the formation of adducts of LPO products with DNA might incite substantial immune responsivity and might be instrumental for the spreading of the immunological responses from aldehyde-modified DNA to native DNA and similarly modified, unmodified and/or structurally analogous self protein antigens, thus leading to autoimmunity

    Distinct roles of presynaptic dopamine receptors in the differential modulation of the intrinsic synapses of medium-spiny neurons in the nucleus accumbens

    Get PDF
    Background: In both schizophrenia and addiction, pathological changes in dopamine release appear to induce alterations in the circuitry of the nucleus accumbens that affect coordinated thought and motivation. Dopamine acts principally on medium-spiny GABA neurons, which comprise 95% of accumbens neurons and give rise to the majority of inhibitory synapses in the nucleus. To examine dopamine action at single medium-spiny neuron synapses, we imaged Ca2+ levels in their presynaptic varicosities in the acute brain slice using two-photon microscopy. Results: Presynaptic Ca2+ rises were differentially modulated by dopamine. The D1/D5 selective agonist SKF81297 was exclusively facilitatory. The D2/D3 selective agonist quinpirole was predominantly inhibitory, but in some instances it was facilitatory. Studies using D2 and D3 receptor knockout mice revealed that quinpirole inhibition was either D2 or D3 receptor-mediated, while facilitation was mainly D3 receptor-mediated. Subsets of varicosities responded to both D1 and D2 agonists, showing that there was significant co-expression of these receptor families in single medium-spiny neurons. Neighboring presynaptic varicosities showed strikingly heterogeneous responses to DA agonists, suggesting that DA receptors may be differentially trafficked to individual varicosities on the same medium-spiny neuron axon. Conclusion: Dopamine receptors are present on the presynaptic varicosities of medium-spiny neurons, where they potently control GABAergic synaptic transmission. While there is significant coexpression of D1 and D2 family dopamine receptors in individual neurons, at the subcellular level, these receptors appear to be heterogeneously distributed, potentially explaining the considerable controversy regarding dopamine action in the striatum, and in particular the degree of dopamine receptor segregation on these neurons. Assuming that post-receptor signaling is restricted to the microdomains of medium-spiny neuron varicosities, the heterogeneous distribution of dopamine receptors on individual varicosities is likely to encode patterns in striatal information processing
    corecore