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Doppler optical frequency domain reflectometry
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Abstract: Coherent optical frequency domain reflectometry has been widely used to locate
static reflectors with high spatial resolution. Here, we present a new type of Doppler optical
frequency domain reflectometry that offers simultaneous measurement of the position and speed
of moving objects. The system is exploited to track optically levitated “flying” particles inside
a hollow-core photonic crystal fiber. As an example, we demonstrate distributed temperature
sensing with sub-mm-scale spatial resolution and a standard deviation of ∼10°C up to 200°C.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Coherent optical frequency domain reflectometry (COFDR) was originally proposed as an
alternative to optical time domain reflectometry (OTDR) [1–3]. Since it offers a spatial
resolution several orders of magnitude better than OTDR, it also allows the analysis of small-scale
components and integrated optical waveguides [4–7]. The high resolution and sensitivity is
useful in many different sensing applications, for example, distributed temperature or strain
sensing based on Rayleigh scattering fingerprints [8–10].

In many sensing situations there is also a great need for dynamic measurements. Although
COFDR systems for detecting vibrations or acoustic signals have been reported [11,12], they have
not yet been extended to dynamic measurements of moving targets. Here, we report for the first
time a Doppler COFDR system in which the instantaneous position and speed of moving objects
are measured with µm-scale spatial resolution and speed accuracy in the µm/s-range. Using a
custom-built dynamic OFDR system, the position and speed of optically levitated flying particles
in a hollow-core photonic crystal fiber (HC-PCF) were continuously monitored, permitting
realization of a versatile distributed temperature sensor with high spatial resolution.

2. Principle of Doppler OFDR

Figure 1 shows a sketch of the Doppler COFDR system, which is based on a Mach-Zehnder
topology. Analogously with radio-frequency-modulated radar systems, the laser frequency was
linearly swept so as to remove the distance ambiguity inherent to conventional interferometers.
The laser output was split up into a reference and a measurement arm incorporating the reflecting
target. First, assuming a steady target with reflectivity R, the time varying signal (after filtering
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out the DC and sum-frequency components) collected by a square-law detector can be written as:

IAC(t) ∝ Re
{︂√

Rs(t)s∗(t − τ)
}︂

= Re
{︂√

R exp(j2π(f0τ + kτt − kτ2/2))
}︂
= Re{b(t)},

(1)

where s(t)= exp(j(2πf 0t+πkt2)) is the normalized linearly chirped optical field, with start
frequency f 0 and sweep rate k=B/T, covering frequency bandwidth B over time T. The time delay
between the two arms τ = 2z0/c is determined by the target position z0 relative to the reference
path length and the speed of light c. For the sake of simplicity, we assume the polarization states
to be perfectly aligned throughout, which can be achieved by including a polarization controller
in the reference path.

Fig. 1. COFDR setup in Mach-Zehnder topology.

Frequency analysis of Eq. (1) yields a beat frequency:

fb =
1

2π
d
dt

arg[b(t)] = kτ. (2)

For static objects, assuming negligible dispersion over the sweep bandwidth, the distance can
be readily calculated from the beat frequency:

z0 = c
τ

2
= c

fb
2k

. (3)

The two-point spatial resolution of COFDR is determined by the target main lobe width of the
Fourier transform [4]:

∆z =
c

2B
. (4)

Note that the exact target position can be determined much more precisely by approximating the
peak with a second-order polynomial and calculating its maximum position. Using a conventional
COFDR system, we have previously demonstrated localization of optically trapped particles with
a precision of ∼2 µm, corresponding to ∼1/15 of the two-point resolution [13].



Research Article Vol. 29, No. 10 / 10 May 2021 / Optics Express 14617

In order to analyze the effects of (uniformly) moving targets, τ in Eq. (1) is replaced by:

τ(t) =
2z(t)

c
=

2(z0 + v0t)
c

, (5)

where v0 is the target speed. Since v0 is much smaller than c in our application, any relativistic
effects can be neglected and the beat signal becomes

b(t) = exp

{︄
j2π

[︄(︄
2kv0

c
−

2kv2
0

c2

)︄
t2 +

(︃
2f0v0

c
+

2kz0
c

−
4kv0z0

c2

)︃
t +

2f0z0
c

−
2kz2

0
c2

]︄}︄
, (6)

giving rise to the beat frequency:

fbeat(t) =
2f0v0

c⏞⏟⏟⏞
I

+
2kz0

c⏞⏟⏟⏞
II

+

(︄
4kv0

c
−

4kv2
0

c2

)︄
t⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

III

−
4kv0z0

c2⏞ˉ̄⏟⏟ˉ̄⏞
IV

≈
2f0v0

c
+

2kz0
c
+

4kv0
c

t⏞⏟⏟⏞
V

. (7)

In Eq. (7) the first term (I) describes a frequency shift caused by the Doppler effect, the second
term (II) is the beat frequency due to the static distance, the third term (III) resembles a quadratic
phase chirp caused by the movement of the target and the last term (IV) depends on both the
speed and position of the target. In most applications, the terms proportional to c−2 are tiny and
therefore can be neglected. Equation (7) indicates that the beat frequency not only depends on
the target distance but also on the target speed (i.e. range-Doppler coupling effect). The time
dependent chirp term (V) in Eq. (7) will cause the target peak to blur in the reflection profile,
which gets broader as the target moves faster. Thus, this chirp will reduce the peak height and the
detection sensitivity for moving targets. Therefore, this needs to be compensated if the position
and speed of the target are to be accurately measured.

A phase-gradient autofocus algorithm, initially proposed for synthetic aperture radar images
[14], was used to refocus the target peak. First, coarse peak detection and windowing of the
reflection profile were applied around the peak of interest. The window width was set wide
enough to cover the full peak energy and yet small enough to exclude noise. Although this
algorithm can be applied iteratively, a fixed window size and a single iteration were sufficient for
our application. The windowed section of the reflection profile containing the peak of interest
was shifted to the origin and the phase error derivative was determined using the relation given
in [14,15]. The phase errors were then determined by numerical integration and any linear slope
was compensated for, since this would cause a target position error. Eventually, the blur was
mitigated by multiplying the windowed peak spectrum with the conjugate phase term and shifting
back the peak to its original position in the reflection profile. Naturally, this correction not only
compensates the chirp term (V) but also removes the phase distortions remaining after imperfect
sweep nonlinearity correction (see Appendix A.1). Figure 2 depicts the reflection profiles (up
and down sweep) of a moving target (2-µm-diameter silica particle trapped and propelled inside
HC-PCF with a moving speed of ∼30.4 mm/s) before and after applying the autofocus algorithm.
It can be seen that peak broadening due to the phase chirp effect can be effectively suppressed by
re-focusing.

Once the chirp term is compensated, two consecutive independent measurements are combined
to determine the position and speed of the target. Figure 3 depicts the impact of the Doppler
frequency shift and the time delay related to the target distance on the measured beat frequency.

Assuming ideal up and down sweeps with the same absolute sweep rate |k| (but opposite signs)
for both measurements, the target position and speed can be calculated from the beat frequencies
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Fig. 2. Calculated reflection profile for the up (red) and down (blue) ramp for a propelled
2-µm-diameter silica particle through the HC-PCF with (saturated colors) and without (faint
colors) refocusing.

Fig. 3. Influence of Doppler frequency shift on the measured beat frequency caused by a
moving target.

|f b,up | and |f b,down |:
z0 =

c
4|k|

(|fb,up | + |fb,down |), (8)

v0 =
c

4f0
(|fb,up | − |fb,down |), (9)

where movement of the target between the two measurements is neglected. Accounting for
different sweep rates k1, k2 and durations T1, T2 and a measurement time delay ∆t between the
up and down ramps (starting at f 01 and f 02 respectively), the position and speed can be retrieved
as (see Appendix A.2 for the derivation):

z0 =
[T1k1(∆−fb − ∆+fb) + ∆−fb∆f0 − ∆+fb(f01 + f02) − (∆t + T2)(∆+fb + ∆−fb)k2]c

4[(T1 − T2 − ∆t)k1k2 − f01k2 − f02k1]
, (10)
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v0 =
[(∆+fb − ∆−fb)k1 + k2(∆+fb + ∆−fb)]c
4{[(T1 − T2 − ∆t)k2 − f02]k1 + f01k2}

, (11)

where ∆f 0 = f 01 – f 02, ∆+f b = |f b,up | + |f b,down | and ∆−f b = |f b,up | − |f b,down |.
Note that in contrast to conventional Doppler velocimetry based on fixed-wavelength laser

[16], the system can measure the instantaneous absolute position of the moving objects and is not
subject to integration error over time.

3. Tracking of optically trapped and propelled particles in HC-PCF

The Doppler COFDR system was used to track optically trapped particles in HC-PCF. Flying
particle sensors in HC-PCF have inherent advantages such as galvanic isolation and coverage
of long distances, while additionally offering reconfigurability, improved spatial resolution and
multi-parameter sensing [17]. The experimental setup is shown in Fig. 4. The 1030 nm trapping
laser emitted ∼200 fs pulses at a repetition rate of 70 MHz. The average total trapping power
was ∼2 W. The use of a pulsed laser is necessary to suppress inter-modal beating between
fundamental and higher order core modes [18]. The measured modal walk-off distance is
∼20 cm (see Appendix A.3). The high repetition frequency of the pulse train ensures that
gravity-related particle displacement between pulses is negligible. The COFDR probe beam at
1550 nm wavelength was coupled into the beam path using a dichroic mirror. The power ratio
of the trapping beams was set using a motorized half-wave plate to adjust the polarization state
of the trapping laser in front of a polarizing beam-splitter. We used a commercially available
swept-wavelength laser source (Luna Phoenix 1400 PM) with a maximum tuning range of 50 nm
around a central wavelength of 1540 nm at a maximum tuning rate of 2000 nm/s (i.e. a sweep
rate of approx. 2.5×1014 Hz s−1). The inset in Fig. 4 shows a scanning electron micrograph of
the single-ring HC-PCF. It has a core diameter of ∼30 µm and can guide both the trapping beam
and the COFDR probe beam with low loss. The microparticles in a suspension were sprayed
into a trapping chamber in front of the end face of the HC-PCF, where they were trapped by
two counter-propagating laser beams and then propelled into the hollow core by adjusting the
power ratio of the trapping beams. The trapping of single (as opposed to multiple) particles in
the hollow core was verified by monitoring the scattered light from the side of the fiber using an
infrared viewer.

Fig. 4. Experimental setup for tracking optically trapped microparticles in a HC-PCF using
Doppler COFDR and the configuration for remote temperature sensing.

We first tested the achievable precision of position measurement for silica microparticles
with different sizes at the maximum sweep rate. In each configuration, a series of 100 repeat
measurements was conducted for which the measured standard deviation is plotted in Fig. 5(a) as
a function of sweep bandwidth. It can be seen that the measurement data fits excellently with the
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inverse proportionality suggested in Eq. (4). Since the sweep bandwidth is directly linked to the
measurement duration, it is possible to balance position precision against measurement rate (see
upper axis). Furthermore, the achievable precision is related to the signal-to-noise ratio (SNR) of
the target reflection peak, which is higher for larger particles and greater sweep bandwidths. In
practice, the maximum measurement rate will be reached once the SNR of the target peak is
too low to be detected reliably. For highly reflective targets, it is limited by the minimum sweep
duration of the tunable laser source. With the laser used, measurement rates up to approximately
250 Hz could be achieved. At the cost of reduced precision, measurement rates in the kHz range
are feasible using commercially available sources.
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Fig. 5. (a) Measured positional precision versus sweep bandwidth for different particle
sizes. The solid lines are fits using inverse proportionality. (b) Instantaneous position (blue)
and speed (red) of a tracked 2-µm-diameter silica particle in HC-PCF. The inset is a zoom
into the first 5 s, during which the particle accelerates.

Figure 5(b) shows the tracking of a moving silica particle with 2 µm diameter that is propelled
along the fiber for around 38 s (see Table 1 for detailed COFDR parameters). We tentatively
attribute the small-scale speed variations to fluctuations in trapping laser power (see Appendix A.4)
that could be reduced using active power stabilization. The speed fluctuations may be also partly
caused by fiber non-uniformities or static charges on the core wall, while the overall exponential
speed reduction is due to fiber attenuation. The accuracy of the speed measurement (a few tens of
µm/s) was assessed using a mirror on a linear stage moving at a known speed (see Appendix A.5).
Note that both positive (forward) and negative (backward) particle speeds can be measured by
the system. The maximum target speed that can be measured is limited by the Nyquist sampling
theorem for highly reflective targets and by the SNR for weakly reflecting targets.
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Table 1. COFDR measurement parameters

Wavelength sweep range 1535 nm – 1545 nm

Probe laser power (at HC-PCF end face) 5.4 mW

Sweep rate 2000 nm/s

Measurement update rate 62.4 Hz

ADC sampling frequency 20.8 MS/s

Maximum measurement range 6.2 m (in air)

Two-point resolution 120 µm (in air)

4. Remote temperature sensing

Next, we used flying particles in HC-PCF in combination with Doppler COFDR to build a
distributed temperature sensor. In the experiment, silica particles of diameter 2 µm were once
again propelled by adjusting the power ratio of the counter-propagating trapping beams. The
terminal velocity of the particle is determined by the balance between the scattering force Fopt
and the Stokes drag force Fdrag [17]:

Fopt = Fdrag = 6πKapµ(T)v, (12)

where µ(T) is the viscosity of air, K is a wall correction factor accounting for the turbulence in
the narrow core [19], ap the particle radius and v is the particle speed. For constant optical force
Fopt the temperature-dependent particle velocity is given by:

v(T) =
Fopt

6πKapµ(T)
, (13)

where the temperature dependence of the viscosity can be modelled using the Sutherland formula
[20]:

µ(T) = µref

(︃
T

Tref

)︃3/2 Tref + S
T + S

, (14)

where S is the Sutherland constant (111 K for air [21]) and µref is the viscosity at the reference
temperature T ref .

A 2-meter-long single-ring HC-PCF was used in the measurement. As shown in Fig. 4, a
section of 2.5 cm was fed through an aluminum block and heated to temperatures up to 200 °C
while the rest of the fiber was kept at room temperature. The temperature of the metal block was
measured using an embedded temperature sensor with an accuracy of 2.5 K (IEC 584, type K,
class 2). The particle was propelled through a ∼50 cm long fiber section containing the heater
while its absolute position and speed were measured. The COFDR parameters are summarized
in Table 1.

So as to mitigate the effects of any overall speed drift with time, all the experimental
measurements of particle speed were normalized to the average speed in a reference fiber section
held at room temperature (see Fig. 6(a)). The estimated spatial resolution for the COFDR
configuration was 120 µm, corresponding to the ultimate theoretical spatial resolution, while the
mean particle speed in the reference section was measured to be 29.1 mm/s, yielding position
and speed data at intervals of 0.47 mm on average. Since this corresponds to the spatial sampling
distance, it sets the upper bound for the spatial resolution of the temperature sensor. By further
adjusting the particle speed it is possible to balance the spatial resolution and the time required
to propel the particle along the fiber length. Note that the steep temperature gradients at the
edges of the heater cause thermal creep flow of air within the hollow core (related to Knudsen
pumps [22]), leading to visible undershoots and fluctuations in speed in the vicinity of these
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points. Based on Eq. (13) and (14), a speed reduction of ∼20% for a temperature increase of
100 K starting from room temperature is expected. This in good agreement with the experimental
results. The observed decrease in speed over distance within the heated section we attribute
tentatively to the thermal creep effect, pending a full investigation.
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Fig. 6. (a) Measured particle speed versus location for different heater temperatures.(b)
Measured average particle speed in the heater section (squares) and curve fit using Eq. (15)
(red line).

To calibrate the sensor, the average particle speed in the heater section was first measured at
seven different metal block temperatures (Fig. 6). The error bars in Fig. 6(b) are given by the
standard deviation of the speed fluctuations over distance within the heater section (see Fig. 6(a)).
Combining Eq. (13) and (14), the temperature dependence of particle speed can be written as:

v(T) = C ·
T(αTT + α0) + S
[T(αTT + α0)]

3/2 , (15)

where the scaling factor α(T)=αTT +α0 was used to relate the actual temperature of the air
in the hollow core to the metal block temperature, read from the heater. A least-squares fit of
the data-points to Eq. (15) yields C= 10.72 m s−1 K1/2, α0 = 0.4902, αT = 1.058 × 10−3 K−1

with S= 111 K [21]. Equation (15) was then used to retrieve the temperature for a series of
measurements taken during the heating and subsequent cooling of the heater. The calculated
temperatures, together with the deviations in the measured metal block temperatures, are shown
in Fig. 7(a) and 7(b). The calculated standard deviation for temperatures up to 100 °C was
4.94°C whereas the overall standard deviation was ∼10.3°C. The increased temperature deviation
at higher temperatures in Fig. 7(b) is partly caused by the reduced temperature sensitivity,
i.e. the reduced slope of v(T)-fit curve (see Fig. 6(b)). An improved approach to calibrating
the temperature from the particle speed is expected to further increase the resolution of the
temperature measurement.
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Fig. 7. (a) Calculated and set temperatures for measurements during heating and cooling of
the heater. (b) Deviation between calculated temperature and set temperature.

5. Conclusion

These proof-of-principle experiments demonstrate that a Doppler OFDR system can track the
instantaneous absolute position and speed of moving objects with high accuracy. Such a system
can be used to probe the motion dynamics of macroscopic objects with micrometer spatial
resolution. It can also be used to probe the viscoelasticity of the gases or liquids in the hollow-core
of a HC-PCF. The integration of Doppler OFDR with particle guidance in HC-PCF opens up
novel possibilities for flying particle sensors capable of measuring multiple physical quantities
with high-spatial resolution. Since the COFDR system can also track the positions of multiple
particles [13], it may be exploited to investigate the dynamics of levitated particles or bound
particle arrays in HC-PCF [18].

Appendix

A.1. Sweep linearization of COFDR

Even for highly optimized sweeping lasers, there always remains a residual deviation from a
perfect frequency ramp, resulting from environmental influences or the internal sweep feedback
mechanisms. It is intuitively clear that any deviation from an ideal sweep will lead to a time-
varying beat signal and therefore distort the reflection profile. As a result, the localization
precision will be reduced or, in the case of oscillating deviations, side-lobes will occur and
corrupt the reflection profile.

To analyze this effect, the ideal laser sweep signal is extended with a phase error function ϕe(t):

s(t) = exp(j2π(f0t + kt2/2) + j2πϕe(t)), (16)

where ϕe(t) consists of a deterministic (but unknown) error term ϕnl(t) caused by the sweep
nonlinearity and a stochastic process ϕpn(t) used to model the laser phase noise:

ϕe(t) = ϕnl(t) + ϕpn(t). (17)

This yields the beat signal in complex notation after down-mixing, low-pass filtering and
scaling (assuming an interferometer delay τ and neglecting any losses):

be(t, τ) =
√

R exp(j2π(ktτ + f0τ − kt2/2)) · exp(j2π∆ϕe(t, τ)), (18)
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where ∆ϕe(t,τ)=∆ϕnl(t,τ)+∆ϕpn(t,τ) with ∆ϕx(t,τ)= ϕx(t) − ϕx(t−τ). For a semiconductor
laser, ϕpn(t) is normally modelled as a Wiener process, meaning that ∆ϕpn is a stationary Gaussian
random process and therefore only depends on τ. For delays much smaller than the laser
coherence time τc, ∆ϕpn ∼ 0 holds and the impact of the laser phase noise can be neglected.

To correct the effect of a deterministic phase error term ϕnl(t), an auxiliary interferometer was
used to interpolate the actual laser frequency for each sample. An absolute wavelength reference
(an absorption cell) is available from trigger signals provided by the laser source at predefined
wavelengths. The measurement interferometer signal was then resampled at equidistant source
frequencies.

Figure 8(a) plots a section of the auxiliary interferometer signal (after subtracting a slowly
varying DC component). First, the exact zero crossings (red markers) were determined by linear
interpolation between data-points on either side of the sign changes. In a second step, the mean
distance between zero crossings with rising and falling slopes was calculated (blue markers) and
used for interpolation. Figure 8(b) shows auxiliary signal period length (resembling equidistant
frequency intervals) determined from the markers for a laser sweep from 1535 nm to 1545 nm in
∼5 ms sampled at 20.8 MS/s. The reference delay τref was chosen small enough to allow direct
monitoring of the laser frequency. Even though a longer delay leads to a smaller free spectral
range in the auxiliary interferometer, and thus a finer “sampling” of the laser frequency, the limit
for τref is the maximum sampling frequency since oversampling is required to precisely determine
the positions of the zero crossings. Table 2 lists the parameters of the auxiliary interferometer in
the COFDR system. The delay fiber in the auxiliary interferometer was placed in a styrodur box
so as to shield it from environmental influences. Furthermore, polarization maintaining fibers
were used in the auxiliary interferometer to avoid polarization-related drift.
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Fig. 8. Working principle of the auxiliary-based resampling technique. (a) Section of the
auxiliary interferometer signal. (b) Period length of the beat signal during the sweep.

The correction term extracted from the auxiliary interferometer with delay τref is given by:

ca(t) = exp(−j2π∆ϕnl(t, τref)) = exp(−j2π(ϕnl(t) − ϕnl(t − τref))), (19)

where we assume τref , τmeas ≪ τc so that the influence of laser phase noise is neglected. Using
this term to correct the measurement signal be(t, τmeas) we obtain:

bcorr(t, τmeas) = ca(t) · be(t, τmeas) = b(t, τmeas)exp(j2π[ϕnl(t − τref) − ϕnl(t − τmeas)]). (20)
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Table 2. Auxiliary interferometer
interpolation

Fiber delay length 0.77 m

Time delay 3.9 ns

Free spectral range 256.5 MHz

Beat frequency at 2000 nm/s ∼935 kHz

Equivalent auxiliary sampling rate ∼1.87 MHz

Obviously, a perfect correction is only achieved when τref = τmeas. In most cases, however,
the error can still be significantly reduced for differing delays ∆τ = τmeas – τref . Assuming a
harmonic phase error function ϕnl(t)=m sin(2πf nlt) with frequency f nl and modulation index m
yields a remaining phase error of the form:

ϕnl(t − τref) − ϕnl(t − τmeas) = 2m sin(πfnl(τmeas − τref)) · cos(πfnl(2t − τref − τmeas))

= Ae(∆τ) · m cos(πfnl(2t − τref − τmeas)),
(21)

which resembles a phase modulation at frequency f nl with a phase shift that depends on ∆τ. More
importantly, the amplitude is scaled by the factor Ae(∆τ)= 2 sin(πf nl∆τ), which is smaller than
unity when |f nl∆τ | < 1/6. The parameters chosen for the setup (Table 2) yield a beat frequency
of ∼1 MHz, allowing aliasing-free sampling of sweep-linearity deviation frequency components
up to 1 MHz. Suppression of those components would be effective up to a target distance of
25 m in air. Figure 9 compares the measured reflectivity of the anti-reflection coated FC/PC fiber
connector at a relative distance of ∼2.8 m with and without auxiliary resampling. It can be seen
that resampling reduces the peak width by a factor of ∼450 while increasing the signal-to-noise
ratio by more than 20 dB.
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Fig. 9. Comparison of reflection from an anti-reflection-coated FC/PC fiber end when
auxiliary resampling is applied (blue) and absent (red).
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A.2. Derivation of Eq. (10) and (11)

Starting from the approximation in Eq. (7), the beat frequencies resulting from an up and down
frequency ramp are:

fb,up(t) =
2f01v0

c
+

2k1z0
c
+

2k1v0T1
c

, (22)

fb,down(t) =
2f02v0

c
+

2k2(z0 + v0∆t)
c

+
2k2v0T2

c
, (23)

where f 01 and f 02 are the start frequencies, k1 and k2 are the sweep rates, and T1 and T2 are the
durations of the up and down frequency ramps, respectively. Without loss of generality, the down
ramp is assumed to start at a time delay ∆t after the up ramp. The last term in Eq. (22) and (23) is
a frequency offset of 4k1v0T1/2/c and 4k2v0T2/2/c, respectively, which remains after refocusing
the peak to the center of the “blur”. Since the sign of the beat frequency cannot be determined,
the sum and difference of the detected peak frequencies are:

∆+fb = |fb,up |+ |fb,down | =
2f01v0 + 2k1z0 + 2k1v0T1 − 2f02v0 − 2k2(v0∆t + z0) − 2k2v0T2

c
, (24)

∆−fb = |fb,up | − |fb,down | =
((2T2 + 2∆t)k2 + 2T1k1 + 2f01 + 2f02)v0 + 2z0(k1 + k2)

c
. (25)

Equation (24) and (25) can be combined to determine the position and speed of the target
yielding Eq. (10) and (11).

A.3. Effect of intermodal beating on particle speed

Figure 10 plots the measured particle speed close to the input face of the HC-PCF (at 3.568 m).
The periodic fluctuations in speed due to intermodal beating are clearly visible. The period of
∼2.3 mm matches the beat period between the LP01- and LP02-like core modes. The beat pattern
decays after ∼20 cm propagation due to walk-off between the different modal pulses.
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Fig. 10. Periodic oscillation in the instantaneous particle speed observed close to the fiber
end face, caused by intermodal beating effect. The inset shows a zoomed-in section where
the beat period can be determined.
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A.4. Measured particle speed and trapping power fluctuation

Figure 11 depicts the normalized particle speed deviation and the trapping power fluctuation for
a ∼10 s measurement interval. The trapping power propagating towards the PCF was probed
with a photodiode placed after a beam splitter while the particle was propelled in the backward
direction with an average speed of 32.7 mm/s. It can be seen that the speed variation mostly
follows the trapping power fluctuation.
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Fig. 11. Measured normalized particle speed and trapping power variation over time.

A.5. Characterization of the speed measurement accuracy
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Fig. 12. (a) Moving speed of stage measured by the COFDR system (red) and calculated
from the stage trigger signal (blue). (b) Deviation between measured speed and reference
(excluding outliers during acceleration/deceleration).
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The accuracy of the position and speed measurements was estimated using a gold mirror
mounted on a linear stage (Zaber X-LDQ0600C). The stage was set to a speed of +/–10 mm/s.
The linear stage outputs a trigger signal every 500 µm as it travels. This was used as a reference.

Aligning the COFDR speed measurements (sweep rate: 2000 nm/s, sweep range: 1518 nm to
1562 nm) with the speed calculated from the trigger signal (see Fig. 12(a)) allowed the deviations
to be calculated by linearly interpolating the reference speed at the times when the COFDR
measurements were made (see Fig. 12(b)). The standard deviation (excluding outliers during
acceleration and deceleration) was estimated as 49.5 µm/s. Note that due to limited internal
sampling frequency (10 kHz) of the stage, the trigger signal uncertainty is 0.1 ms, causing a
speed uncertainty of ∼20 µm/s in the reference trace.
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