178 research outputs found

    A model of large-scale proteome evolution

    Get PDF
    The next step in the understanding of the genome organization, after the determination of complete sequences, involves proteomics. The proteome includes the whole set of protein-protein interactions, and two recent independent studies have shown that its topology displays a number of surprising features shared by other complex networks, both natural and artificial. In order to understand the origins of this topology and its evolutionary implications, we present a simple model of proteome evolution that is able to reproduce many of the observed statistical regularities reported from the analysis of the yeast proteome. Our results suggest that the observed patterns can be explained by a process of gene duplication and diversification that would evolve proteome networks under a selection pressure, favoring robustness against failure of its individual components

    Generation of uncorrelated random scale-free networks

    Get PDF
    Uncorrelated random scale-free networks are useful null models to check the accuracy an the analytical solutions of dynamical processes defined on complex networks. We propose and analyze a model capable to generate random uncorrelated scale-free networks with no multiple and self-connections. The model is based on the classical configuration model, with an additional restriction on the maximum possible degree of the vertices. We check numerically that the proposed model indeed generates scale-free networks with no two and three vertex correlations, as measured by the average degree of the nearest neighbors and the clustering coefficient of the vertices of degree kk, respectively

    Universality classes in directed sandpile models

    Full text link
    We perform large scale numerical simulations of a directed version of the two-state stochastic sandpile model. Numerical results show that this stochastic model defines a new universality class with respect to the Abelian directed sandpile. The physical origin of the different critical behavior has to be ascribed to the presence of multiple topplings in the stochastic model. These results provide new insights onto the long debated question of universality in abelian and stochastic sandpiles.Comment: 5 pages, RevTex, includes 9 EPS figures. Minor english corrections. One reference adde

    Diffusion-annihilation processes in complex networks

    Get PDF
    We present a detailed analytical study of the A+AA+A\to\emptyset diffusion-annihilation process in complex networks. By means of microscopic arguments, we derive a set of rate equations for the density of AA particles in vertices of a given degree, valid for any generic degree distribution, and which we solve for uncorrelated networks. For homogeneous networks (with bounded fluctuations), we recover the standard mean-field solution, i.e. a particle density decreasing as the inverse of time. For heterogeneous (scale-free networks) in the infinite network size limit, we obtain instead a density decreasing as a power-law, with an exponent depending on the degree distribution. We also analyze the role of finite size effects, showing that any finite scale-free network leads to the mean-field behavior, with a prefactor depending on the network size. We check our analytical predictions with extensive numerical simulations on homogeneous networks with Poisson degree distribution and scale-free networks with different degree exponents.Comment: 9 pages, 5 EPS figure

    Self-organization of collaboration networks

    Get PDF
    We study collaboration networks in terms of evolving, self-organizing bipartite graph models. We propose a model of a growing network, which combines preferential edge attachment with the bipartite structure, generic for collaboration networks. The model depends exclusively on basic properties of the network, such as the total number of collaborators and acts of collaboration, the mean size of collaborations, etc. The simplest model defined within this framework already allows us to describe many of the main topological characteristics (degree distribution, clustering coefficient, etc.) of one-mode projections of several real collaboration networks, without parameter fitting. We explain the observed dependence of the local clustering on degree and the degree--degree correlations in terms of the ``aging'' of collaborators and their physical impossibility to participate in an unlimited number of collaborations.Comment: 10 pages, 8 figure

    Diffusion-annihilation processes in complex networks

    Get PDF
    We present a detailed analytical study of the A+AA+A\to\emptyset diffusion-annihilation process in complex networks. By means of microscopic arguments, we derive a set of rate equations for the density of AA particles in vertices of a given degree, valid for any generic degree distribution, and which we solve for uncorrelated networks. For homogeneous networks (with bounded fluctuations), we recover the standard mean-field solution, i.e. a particle density decreasing as the inverse of time. For heterogeneous (scale-free networks) in the infinite network size limit, we obtain instead a density decreasing as a power-law, with an exponent depending on the degree distribution. We also analyze the role of finite size effects, showing that any finite scale-free network leads to the mean-field behavior, with a prefactor depending on the network size. We check our analytical predictions with extensive numerical simulations on homogeneous networks with Poisson degree distribution and scale-free networks with different degree exponents.Comment: 9 pages, 5 EPS figure

    Modeling human dynamics of face-to-face interaction networks

    Get PDF
    Face-to-face interaction networks describe social interactions in human gatherings, and are the substrate for processes such as epidemic spreading and gossip propagation. The bursty nature of human behavior characterizes many aspects of empirical data, such as the distribution of conversation lengths, of conversations per person, or of interconversation times. Despite several recent attempts, a general theoretical understanding of the global picture emerging from data is still lacking. Here we present a simple model that reproduces quantitatively most of the relevant features of empirical face-to-face interaction networks. The model describes agents that perform a random walk in a two-dimensional space and are characterized by an attractiveness whose effect is to slow down the motion of people around them. The proposed framework sheds light on the dynamics of human interactions and can improve the modeling of dynamical processes taking place on the ensuing dynamical social networks

    Corrections to scaling in the forest-fire model

    Get PDF
    We present a systematic study of corrections to scaling in the self-organized critical forest-fire model. The analysis of the steady-state condition for the density of trees allows us to pinpoint the presence of these corrections, which take the form of subdominant exponents modifying the standard finite-size scaling form. Applying an extended version of the moment analysis technique, we find the scaling region of the model and compute the first non-trivial corrections to scaling.Comment: RevTeX, 7 pages, 7 eps figure

    Multifractal properties of power-law time sequences; application to ricepiles

    Get PDF
    We study the properties of time sequences extracted from a self-organized critical system, within the framework of the mathematical multifractal analysis. To this end, we propose a fixed-mass algorithm, well suited to deal with highly inhomogeneous one dimensional multifractal measures. We find that the fixed mass (dual) spectrum of generalized dimensions depends on both the system size L and the length N of the sequence considered, being however stable when these two parameters are kept fixed. A finite-size scaling relation is proposed, allowing us to define a renormalized spectrum, independent of size effects.We interpret our results as an evidence of extremely long-range correlations induced in the sequence by the criticality of the systemComment: 12 pages, RevTex, includes 9 PS figures, Phys. Rev. E (in press

    The effects of anthocyanin-rich Myrtaceae fruits peel powder on fibrosis-associated hepatocarcinogenesisin mice.

    Get PDF
    Fruits from Myrtaceae family, as jabuticaba (Myrciaria jaboticaba (Vell) O. Berg), jamelão (Syzygium cumini (L.) Skeels) and jambo (Syzygium malaccense), raise interest due to their high levels of anthocyanins, antioxidant compounds, and, thus, potential for chronic disease risk reduction¹. Therefore, the study evaluated whether the ingestion of jabuticaba, jamelão or jambo peel powder attenuates fibrosis-associated hepatocarcinogenesis. Neonatal female C3H/Hej mice were submitted to a diethylnitrosamine (DEN)/carbon tetrachloride (CCl4)-induced fibrosis-associated hepatocarcinogenesis model. Mice also received basal diet or basal diet containing 2% of jabuticaba, jamelão or jambo dehydrated peels for 10 weeks. HPLC analysis of dehydrated fruit peels revealed high levels of anthocyanins in jabuticaba (802.89±22.88 mg/100g), jamelão (575.95±9.42 mg/100g) and jambo (156.05±10.39 mg/100g). These fruits displayed different types of anthocyanins (Figures 1-3). Interestingly, only the ingestion of basal diet containing jamelão peel powder attenuated liver fibrosis compared to DEN/CCl4 (Figure 4). Mechanisms will be evaluated, as well as the effects of these fruits on the development of preneoplasic/neoplastic liver lesions.WTPC. 21 a 26 de abril
    corecore