138 research outputs found

    Dioxin-Induced Changes in Epididymal Sperm Count and Spermatogenesis

    Get PDF
    A single in utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on gestation day 15 decreased epididymal sperm count in adult rats and thus was used to establish a tolerable daily intake for TCDD. However, several laboratories have been unable to replicate these findings. Moreover, conflicting reports of TCDD effects on daily sperm production suggest that spermatogenesis may not be as sensitive to the adverse effects of TCDD as previously thought. We performed a PubMed search using relevant search terms linking dioxin exposure with adverse effects on reproduction and spermatogenesis. Developmental exposure to TCDD is consistently linked with decreased cauda epididymal sperm counts in animal studies, although at higher dose levels than those used in some earlier studies. However, the evidence linking in utero TCDD exposure and spermatogenesis is not convincing. Animal studies provide clear evidence of an adverse effect of in utero TCDD exposure on epididymal sperm count but do not support the conclusion that spermatogenesis is adversely affected. The mechanisms underlying decreased epididymal sperm count are unknown; however, we postulate that epididymal function is the key target for the adverse effects of TCDD.Uma única exposição in utero a 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) no 15º dia de gestação diminuiu a contagem de esperma epididimal em ratos adultos e por isso foi utilizada para estabelecer uma dosagem diária tolerável para TCDD. No entanto, diversos laboratórios não conseguiram reproduzir esses resultados. Além disso, relatórios conflitantes dos efeitos de TCDD na produção diária de esperma sugere que espermatogênese pode não ser tão sensível aos efeitos adversos do TCDD como antes se pensava. Foi feita uma pesquisa no PubMed usando termos de pesquisa relevantes, relacionados à exposição à dioxina com efeitos adversos na reprodução e na espermatogênese. Exposição em desenvolvimento ao TCDD é consistentemente relacionada à diminuição da contagem da cauda epididimal de esperma, mas não apoia a conclusão de que a espermatogênese é afetada. Os mecanismos por trás da diminuição da contagem de esperma epididimal são desconhecidos; no entanto, contestamos que a função epididimal é a chave para efeitos adversos do TCDD

    Localization and Androgen Regulation of Metastasis-Associated Protein 1 in Mouse Epididymis

    Get PDF
    BACKGROUND: Metastasis-associated protein 1 (MTA1), the founding member of the MTA family of genes, can modulate transcription by influencing the status of chromatin remodeling. Despite its strong correlation with the metastatic potential of cancer cells, MTA1 can also regulate crucial cellular pathways by modifying the acetylation status. We have previously reported the presence of MTA1/MTA1 in human and mouse testes, providing the evidence for its involvement in the regulation of testicular function during murine spermatogenesis. The objective of present study was to further assess the localization of MTA1 in mouse epididymis on both transcriptional and translational level, and then to explore whether MTA1 expression is regulated by androgens and postnatal epididymal development. METHODOLOGY/PRINCIPAL FINDINGS: Mice were deprived of circulating androgen by bilaterally castration and were then supplemented with exogenous testosterone propionate for one week. MTA1 was immunolocalized in the epithelium of the entire epididymis with the maximal expression in the nuclei of principal cells and of clear cells in proximal region. Its expression decreased gradually after castration, whereas testosterone treatment could restore the expression, indicating that the expression of this gene is dependent on androgen. During postnatal development, the protein expression in the epididymis began to appear from day 7 to day 14, increased dramatically from postnatal day 28, and peaked at adulthood onwards, coinciding with both the well differentiated status of epididymis and the mature levels of circulating androgens. This region- and cell-specific pattern was also conservative in normal human epididymis. CONCLUSIONS: Our data suggest that the expression of MTA1 protein could be regulated by androgen pathway and its expression level is closely associated with the postnatal development of the epididymis, giving rise to the possibility that this gene plays a potential role in sperm maturation and fertility

    Effects of endocrine disrupting chemicals on gonad development: Mechanistic insights from fish and mammals

    Get PDF
    Over the past century, evidence has emerged that endocrine disrupting chemicals (EDCs) have an impact on reproductive health. An increased frequency of reproductive disorders has been observed worldwide in both wildlife and humans that is correlated with accidental exposures to EDCs and their increased production. Epidemiological and experimental studies have highlighted the consequences of early exposures and the existence of key windows of sensitivity during development. Such early in life exposures can have an immediate impact on gonadal and reproductive tract development, as well as on long-term reproductive health in both males and females. Traditionally, EDCs were thought to exert their effects by modifying the endocrine pathways controlling reproduction. Advances in knowledge of the mechanisms regulating sex determination, differentiation and gonadal development in fish and rodents have led to a better understanding of the molecular mechanisms underlying the effects of early exposure to EDCs on reproduction. In this manuscript, we review the key developmental stages sensitive to EDCs and the state of knowledge on the mechanisms by which model EDCs affect these processes, based on the roadmap of gonad development specific to fish and mammals.The authors are grateful to the Intersectoral Centre for Endocrine Disruptor Analysis (ICEDA)'s researcher network that facilitated this Special Issue. LNM was supported by a H2020-Marie Skłodowska-Curie Action MSCA-IF-RI- 2017 awarded by the European Commission (ref. 797725-EpiSTOX).With the institutional support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S)Peer reviewe

    Teratology Primer-2nd Edition (7/9/2010)

    Get PDF
    Foreword: What is Teratology? “What a piece of work is an embryo!” as Hamlet might have said. “In form and moving how express and admirable! In complexity how infinite!” It starts as a single cell, which by repeated divisions gives rise to many genetically identical cells. These cells receive signals from their surroundings and from one another as to where they are in this ball of cells —front or back, right or left, headwards or tailwards, and what they are destined to become. Each cell commits itself to being one of many types; the cells migrate, combine into tissues, or get out of the way by dying at predetermined times and places. The tissues signal one another to take their own pathways; they bend, twist, and form organs. An organism emerges. This wondrous transformation from single celled simplicity to myriad-celled complexity is programmed by genes that, in the greatest mystery of all, are turned on and off at specified times and places to coordinate the process. It is a wonder that this marvelously emergent operation, where there are so many opportunities for mistakes, ever produces a well-formed and functional organism. And sometimes it doesn’t. Mistakes occur. Defective genes may disturb development in ways that lead to death or to malformations. Extrinsic factors may do the same. “Teratogenic” refers to factors that cause malformations, whether they be genes or environmental agents. The word comes from the Greek “teras,” for “monster,” a term applied in ancient times to babies with severe malformations, which were considered portents or, in the Latin, “monstra.” Malformations can happen in many ways. For example, when the neural plate rolls up to form the neural tube, it may not close completely, resulting in a neural tube defect—anencephaly if the opening is in the head region, or spina bifida if it is lower down. The embryonic processes that form the face may fail to fuse, resulting in a cleft lip. Later, the shelves that will form the palate may fail to move from the vertical to the horizontal, where they should meet in the midline and fuse, resulting in a cleft palate. Or they may meet, but fail to fuse, with the same result. The forebrain may fail to induce the overlying tissue to form the eye, so there is no eye (anophthalmia). The tissues between the toes may fail to break down as they should, and the toes remain webbed. Experimental teratology flourished in the 19th century, and embryologists knew well that the development of bird and frog embryos could be deranged by environmental “insults,” such as lack of oxygen (hypoxia). But the mammalian uterus was thought to be an impregnable barrier that would protect the embryo from such threats. By exclusion, mammalian malformations must be genetic, it was thought. In the early 1940s, several events changed this view. In Australia an astute ophthalmologist, Norman Gregg, established a connection between maternal rubella (German measles) and the triad of cataracts, heart malformations, and deafness. In Cincinnati Josef Warkany, an Austrian pediatrician showed that depriving female rats of vitamin B (riboflavin) could cause malformations in their offspring— one of the early experimental demonstrations of a teratogen. Warkany was trying to produce congenital cretinism by putting the rats on an iodine deficient diet. The diet did indeed cause malformations, but not because of the iodine deficiency; depleting the diet of iodine had also depleted it of riboflavin! Several other teratogens were found in experimental animals, including nitrogen mustard (an anti cancer drug), trypan blue (a dye), and hypoxia (lack of oxygen). The pendulum was swinging back; it seemed that malformations were not genetically, but environmentally caused. In Montreal, in the early 1950s, Clarke Fraser’s group wanted to bring genetics back into the picture. They had found that treating pregnant mice with cortisone caused cleft palate in the offspring, and showed that the frequency was high in some strains and low in others. The only difference was in the genes. So began “teratogenetics,” the study of how genes influence the embryo’s susceptibility to teratogens. The McGill group went on to develop the idea that an embryo’s genetically determined, normal, pattern of development could influence its susceptibility to a teratogen— the multifactorial threshold concept. For instance, an embryo must move its palate shelves from vertical to horizontal before a certain critical point or they will not meet and fuse. A teratogen that causes cleft palate by delaying shelf movement beyond this point is more likely to do so in an embryo whose genes normally move its shelves late. As studies of the basis for abnormal development progressed, patterns began to appear, and the principles of teratology were developed. These stated, in summary, that the probability of a malformation being produced by a teratogen depends on the dose of the agent, the stage at which the embryo is exposed, and the genotype of the embryo and mother. The number of mammalian teratogens grew, and those who worked with them began to meet from time to time, to talk about what they were finding, leading, in 1960, to the formation of the Teratology Society. There were, of course, concerns about whether these experimental teratogens would be a threat to human embryos, but it was thought, by me at least, that they were all “sledgehammer blows,” that would be teratogenic in people only at doses far above those to which human embryos would be exposed. So not to worry, or so we thought. Then came thalidomide, a totally unexpected catastrophe. The discovery that ordinary doses of this supposedly “harmless” sleeping pill and anti-nauseant could cause severe malformations in human babies galvanized this new field of teratology. Scientists who had been quietly working in their laboratories suddenly found themselves spending much of their time in conferences and workshops, sitting on advisory committees, acting as consultants for pharmaceutical companies, regulatory agencies, and lawyers, as well as redesigning their research plans. The field of teratology and developmental toxicology expanded rapidly. The following pages will show how far we have come, and how many important questions still remain to be answered. A lot of effort has gone into developing ways to predict how much of a hazard a particular experimental teratogen would be to the human embryo (chapters 9–19). It was recognized that animal studies might not prove a drug was “safe” for the human embryo (in spite of great pressure from legislators and the public to do so), since species can vary in their responses to teratogenic exposures. A number of human teratogens have been identified, and some, suspected of teratogenicity, have been exonerated—at least of a detectable risk (chapters 21–32). Regulations for testing drugs before market release have greatly improved (chapter 14). Other chapters deal with how much such things as population studies (chapter 11), post-marketing surveillance (chapter 13), and systems biology (chapter 16) add to our understanding. And, in a major advance, the maternal role of folate in preventing neural tube defects and other birth defects is being exploited (chapter 32). Encouraging women to take folic acid supplements and adding folate to flour have produced dramatic falls in the frequency of neural tube defects in many parts of the world. Progress has been made not only in the use of animal studies to predict human risks, but also to illumine how, and under what circumstances, teratogens act to produce malformations (chapters 2–8). These studies have contributed greatly to our knowledge of abnormal and also normal development. Now we are beginning to see exactly when and where the genes turn on and off in the embryo, to appreciate how they guide development and to gain exciting new insights into how genes and teratogens interact. The prospects for progress in the war on birth defects were never brighter. F. Clarke Fraser McGill University (Emeritus) Montreal, Quebec, Canad

    An integrated epigenomic analysis for type 2 diabetes susceptibility loci in monozygotic twins

    Get PDF
    DNA methylation has a great potential for understanding the aetiology of common complex traits such as Type 2 diabetes (T2D). Here we perform genome-wide methylated DNA immunoprecipitation sequencing (MeDIP-seq) in whole-blood-derived DNA from 27 monozygotic twin pairs and follow up results with replication and integrated omics analyses. We identify predominately hypermethylated T2D-related differentially methylated regions (DMRs) and replicate the top signals in 42 unrelated T2D cases and 221 controls. The strongest signal is in the promoter of the MALT1 gene, involved in insulin and glycaemic pathways, and related to taurocholate levels in blood. Integrating the DNA methylome findings with T2D GWAS meta-analysis results reveals a strong enrichment for DMRs in T2D-susceptibility loci. We also detect signals specific to T2D-discordant twins in the GPR61 and PRKCB genes. These replicated T2D associations reflect both likely causal and consequential pathways of the disease. The analysis indicates how an integrated genomics and epigenomics approach, utilizing an MZ twin design, can provide pathogenic insights as well as potential drug targets and biomarkers for T2D and other complex traits.Funding support for this project was obtained from the European Research Council (project number 250157) and BGI. The study was also supported by TwinsUK, which is funded by the Wellcome Trust; European Community’s Seventh Framework Programme (FP7/2007-2013); and also receives support from the National Institute for Health Research (NIHR) BioResource, Clinical Research Facility and Biomedical Research Centre based at Guy’s and St Thomas' NHS Foundation Trust and King’s College London. SNP Genotyping was performed by The Wellcome Trust Sanger Institute and National Eye Institute via NIH/CIDR. M.M. is the holder of Wellcome Trust Senior Investigator Award (Wellcome 098381). T.D.S. is the holder of an ERC Advanced Principal Investigator award (ERC 250157). A.P.M. is a Wellcome Trust Senior Research Fellow in Basic Biomedical Science (grant number WT098017). Skeletal muscle 450k methylation project is supported by European Community's Seventh Framework Programme (FP7/2007-2013) under DEXLIFE project (grant agreement no. HEALTH-F2-2011-279228)

    Sodium Coupled Bicarbonate Influx Regulates Intracellular and Apical pH in Cultured Rat Caput Epididymal Epithelium

    Get PDF
    The epithelium lining the epididymis provides an optimal acidic fluid microenvironment in the epididymal tract that enable spermatozoa to complete the maturation process. The present study aims to investigate the functional role of Na(+)/HCO(3)(-) cotransporter in the pH regulation in rat epididymis.Immunofluorescence staining of pan cytokeratin in the primary culture of rat caput epididymal epithelium showed that the system was a suitable model for investigating the function of epididymal epithelium. Intracellular and apical pH were measured using the fluorescent pH sensitive probe carboxy-seminaphthorhodafluor-4F acetoxymethyl ester (SNARF-4F) and sparklet pH electrode respectively to explore the functional role of rat epididymal epithelium. In the HEPES buffered Krebs-Henseleit (KH) solution, the intracellular pH (pHi) recovery from NH(4)Cl induced acidification in the cultured caput epididymal epithelium was completely inhibited by amiloride, the inhibitor of Na(+)/H(+) exchanger (NHE). Immediately changing of the KH solution from HEPES buffered to HCO(3)(-) buffered would cause another pHi recovery. The pHi recovery in HCO(3)(-) buffered KH solution was inhibited by 4, 4diisothiocyanatostilbene-2,2-disulfonic acid (DIDS), the inhibitor of HCO(3)(-) transporter or by removal of extracellular Na(+). The extracellular pH measurement showed that the apical pH would increase when adding DIDS to the apical side of epididymal epithelial monolayer, however adding DIDS to the basolateral side had no effect on apical pH.The present study shows that sodium coupled bicarbonate influx regulates intracellular and apical pH in cultured caput epididymal epithelium
    corecore