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An integrated epigenomic analysis for type 2
diabetes susceptibility loci in monozygotic twins
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Andrew P. Morris3,5, Marı́a Berdasco6, Manel Esteller6,7,8, M. Julia Brosnan9, Panos Deloukas10,11,

Mark I. McCarthy3,12,13, Sally L. John9, Jordana T. Bell1,y, Jun Wang2,11,14,15,y & Tim D. Spector1,y

DNA methylation has a great potential for understanding the aetiology of common complex

traits such as Type 2 diabetes (T2D). Here we perform genome-wide methylated DNA

immunoprecipitation sequencing (MeDIP-seq) in whole-blood-derived DNA from 27 mono-

zygotic twin pairs and follow up results with replication and integrated omics analyses. We

identify predominately hypermethylated T2D-related differentially methylated regions

(DMRs) and replicate the top signals in 42 unrelated T2D cases and 221 controls. The

strongest signal is in the promoter of the MALT1 gene, involved in insulin and glycaemic

pathways, and related to taurocholate levels in blood. Integrating the DNA methylome

findings with T2D GWAS meta-analysis results reveals a strong enrichment for DMRs in

T2D-susceptibility loci. We also detect signals specific to T2D-discordant twins in the

GPR61 and PRKCB genes. These replicated T2D associations reflect both likely causal and

consequential pathways of the disease. The analysis indicates how an integrated genomics

and epigenomics approach, utilizing an MZ twin design, can provide pathogenic insights as

well as potential drug targets and biomarkers for T2D and other complex traits.
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T
ype 2 diabetes (T2D) is a highly heterogeneous disease
caused via a combination of genetic susceptibility and
environmental exposures. Recent genome-wide association

studies (GWAS) have identified at least 65 T2D loci, which
explain only B6% of disease susceptibility variance1. Part of the
variance in T2D could also be explained by epigenetic effects,
such as differences in DNA methylation2,3. Finding disease-
associated DNA methylation variation will provide insight into
novel molecular disease mechanisms, may help to predict disease
status and potentially generate novel treatment methods. The
identification of these genome-wide differentially methylated
regions (DMRs) in association with complex phenotypes through
epigenome wide association studies3,4, is substantially improved
by a powerful disease-discordant identical twin model5. Previous
studies in psychiatric disease and psoriasis using this twin model
with Illumina HumanMethylation27K arrays have provided
suggestive, but unreplicated evidence of associations6,7, and
more recent analyses with the Illumina HumanMethylation450k
array in unrelated subjects have identified significant effects in
autoimmune disease, within the HLA region8.

In this study, we use high-throughput methylation immuno-
precipitation sequencing (methylated DNA immunoprecipita-
tion sequencing, MeDIP-seq) to obtain whole-blood DNA
methylation profiles. MeDIP-seq enables a cost-effective gen-
ome-wide DNA methylome characterization and provides access
into moderately dense CpG regions of the genome, such as
CpG island ‘shores’ (refs 9,10) and repetitive elements with

potential regulatory effects11. We compare genome-wide DNA
methylation profiles in T2D to identify DMRs in the total
set of 27 discordant and concordant pairs of monozygotic (MZ)
adult twins using a mixed effect model. We follow these up
with analysis restricted to the 17 T2D-discordant MZ
twins to identify genetically independent DMRs (giDMRs)
with a paired model. Importantly, we replicate our results in
an independent sample of 263 unrelated cases (42) and
controls (221).

Results
DNA methylome analysis in MZ twins. MeDIP-seq data were
generated at B30 million paired-end reads of length 50 bp per
individual, and mapped to the human genome using Novoalign12.
We quantified relative levels of DNA methylation in overlapping
bins of size 500 bp (sliding window of 250 bp) using MEDIPS13.
We assessed evidence of DMRs in T2D (T2D-DMRs) in the
entire sample of 27 MZ twin pairs, which consisted of 17 T2D
discordant, 3 T2D concordant and 7 healthy control concordant
twin pairs (Supplementary Data 1). In this exploratory stage, we
identified one disease-associated DMR at a FDR level of 5%, 31
DMRs at 10% and 4,545 DMRs at 25% using a linear mixed
effects model. Taking the FDR 25% cutoff as our suggestive T2D-
DMR set, approximately two-thirds of the observed suggestive
T2D-DMRs are hypermethylated in cases (Fig. 1). Using
annotations to 53,631 autosomal Ensembl genes (19,816 protein
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Figure 1 | T2D-DMR genome-wide distribution. (a) Circos plot of the T2D-DMR distribution. Green track indicates the association of DNA methylation

in each bin with T2D status (� log10 (linear mixed effect model p value)). Labelled in black are the 1,355 replicated T2D-DMRs. The middle circle

indicates the effect of the most significant replicated DMRs per 10 Mbp in MZ discovery samples. The inner circle indicates the effect of the DMRs in

the replication set. (b) The association between DNA methylation and T2D status at T2D genes nearest to T2D-GWAS loci. The genes are ranked by

the significance of the T2D-DMR effects, such that the top 12 genes are within the set of 68 genome-wide FDR¼ 25% T2D-DMR genes. The bar colour

shows the direction of methylation effects from hypermethylation to hypomethylation.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6719

2 NATURE COMMUNICATIONS | 5:5719 | DOI: 10.1038/ncomms6719 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


coding, 22,013 non-coding, 11,802 pseudogenes) 1,535 suggestive
T2D-DMRs (33.7%) are located in the extended promoter region
(within 20 kb upstream of the gene including potential distal
promoter and nearby regulatory elements14) and 2,494 (54.8%)
are found to reside within the gene body. In total, 3,597 genes are
annotated to contain at least one suggestive T2D-DMR within the
gene body or promoter region (Supplementary Data 2). Exactly
0.8% of the T2D-DMRs are located within 100 bp of the
transcription start site (TSS), which is 34% more than that
expected by chance (comparing observed data to randomly
permuted TSS locations within chromosome for 20 permutations,
Po0.05). We also assess the overlap between the suggestive T2D-
DMRs with the most variable DNA methylome regions (totalling
492 Mb) detected by whole-genome bisulfite sequencing from 42
data sets across 30 human cell and tissue types defined by Ziller
et al.15 Altogether, 867 T2D-DMRs (19%) co-localize with DNA
methylation variation loci, which translates to a 1.1-fold
enrichment (Fisher’s test P¼ 0.003).

To further validate our MeDIP-seq methylome analysis, we
also assess the highly-replicated DNA methylation association
with smoking status in the genes ALPPL2 (2q37.1 region), AHRR
and F2RL3 within our data set. We selected previously identified
smoking-associated 450k CpG sites in these genes, and extracted
MeDIP-seq bins that overlap the smoking-associated CpG site.
We find significant associations between smoking status and
methylation levels at CpG sites in the ALPPL2 and AHRR genes
(Bonferroni corrected Po0.05) and borderline uncorrected
significance for the F2RL3 gene. These findings are reassuringly
consistent with recent discoveries, despite the small numbers of
smokers in our sample (11 out of 54) and the use of different
technologies.

T2D-DMRs validation and replication. To validate our MeDIP-
seq results with another platform, we targeted the top 24 DMRs
from the more stringent FDR 10% set and 7 other suggestive
T2D-DMRs in the same set of samples using the Illumina
HumanMethylation450K Bead Chip (Supplementary Data 3). Of
these 31 DMRs, 20 DMRs have representative 450k probes for the
validation test. Of these 20 DMRs, 12 DMRs are validated with
the same direction of effect at nominal significance (linear mixed
effect model Po0.05), and a further 4 DMRs show the same
direction of effect, but do not reach nominal significance.

We then attempted replication of all 4,545 suggestive T2D-
DMRs in an independent sample of 42 unrelated T2D cases and
221 UK controls, matched for age, body mass index (BMI) and
sex with single-end MeDIP-sequencing profiles. Of the 4,545
DMRs, 3,939 (87%) show the same direction of association and
1,355 (30%) replicate with the same direction of association and
with nominal significance (linear regression Po0.05).

MALT1 methylation associates with T2D. The top ranked T2D-
DMR (chr18:56336501–56337000, P¼ 9.95� 10� 10, b¼ 0.08,
FDR 5%; replication P¼ 2� 10� 3) overlaps another T2D-DMR
(chr18:56336751–56337250, P¼ 6� 10� 5, FDR 23%, b¼ 0.1,
replication P¼ 5� 10� 4, Fig. 2). These DMRs are located in a
2kb region upstream of the TSS within the 50 promoter (as
defined by ChromHMM analyses in GM12878 (ref. 16)) of the
MALT1 gene (mucosa-associated lymphoid tissue lymphoma
translocation protein 1). MALT1 is a signalling protein with a key
role in antigen receptor-mediated lymphocyte activation through
the nuclear factor-kB pathway, important in the development and
function of B and T cells17, as well as energy and insulin
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Figure 2 | DNA methylation and metabolomics profiles at MALT1. Normalized RPM levels in T2D cases and unaffected controls in the discovery

(a) and replication (b) data sets. (a) Solid black lines link each pair of 17 T2D-discordant twins. (b) Association profiles in the replication set of 263

individuals with s.e. (c) Significant metabolites associated with levels of DNA methylation in the data set, and direction of association.
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pathways18. We explored genetic contributions to MALT1
regulation, but found no evidence that genetic variants are
associated with either MALT1 methylation (in the replication
sample) or expression in adipose, lymphoblastoid cell lines , skin
tissue (using the MuTHER gene expression data set from the
same twin population19). Furthermore, whole-blood DNA
methylation in MALT1 did not associate with its gene
expression in the three tested tissues, although the gene has
previously been shown to be expressed in whole blood20.

To explore a potential functional influence of the MALT1
DMR on T2D, we correlated the top DMR’s (chr18: 56336501–
56337000) methylation patterns with 503 fasting blood metabo-
lites profiled by mass spectrometry21. Seven metabolites
consistently associate with MALT1 methylation in both the
discovery and replication samples (meta-analysis Bonferroni
correction Po0.05; Supplementary Data 4). Among these is
taurocholate, which has been associated with increasing L cell and
insulin secretion as well as a decrease in blood glucose and food
intake in obese type 2 diabetic volunteers22.

Enrichment in T2D GWAS loci and imprinted
genes. We next integrated our DMR findings with GWAS meta-
analysis results1 and found significant overlap of T2D-DMRs and
GWAS loci using three approaches. First, we compare the most
significant single nucleotide polymorphisms (SNPs) within each
of the 65 T2D GWAS loci (50 kb either side of the SNP) with our
4,545 suggestive T2D-DMRs (FDR 25%), and observe a
significant overlap of genomic regions (Fisher’s test P¼ 0.0004).
Second, we compare the 65 genes closest to the published GWAS
T2D loci with our 3,597 T2D-DMR genes, and find highly
significant overlap of genes (Fisher’s test P¼ 0.004). Third, the
ranking of DMR p values within the GWAS T2D loci in the
genome is significantly higher than that for sets of randomly
sampled Ensembl genes that had MeDIP-seq coverage (10,000
draws Wilcoxon ranking test Po0.0001; Supplementary Data 5).
In total, 12 of the 65 reported T2D GWAS loci are significantly
differentially methylated (FDR 25%), and these include well-
documented T2D loci such as those near IGF2BP2 (Insulin-like
growth factor 2 mRNA-binding protein 2) and THADA (thyroid
adenoma-associated gene). The DNA methylation levels at these
12 T2D GWAS loci clustered the individuals in our study into
two clear case–control groups (Supplementary Fig.1a,b). As a
control, and a check for bias and specificity, we found no
enrichment of GWAS genes related to other diseases and
phenotypes, such as psoriasis, Crohn’s disease and hair colour
(Supplementary Data 6). The significant overlap between T2D-
DMR genes and T2D GWAS loci suggests that DNA methylation
or related chromatin structure alterations of many T2D-DMR
genes could be causally related to T2D status and in theory
potentially reversible, which therapeutically could have major
clinical promise.

We further cross referenced our top 3,597 genes nearest to the
4,545 suggestive T2D-DMRs (FDR¼ 25%) with well-established
imprinted loci from The Genomic Imprinting Website23. We
examined imprinting regions because: (1) previously published
studies have suggested a role for parent-of-origin effects in
T2D24,25; (2) obesity, being a risk factor for T2D, is a common
phenotype in syndromic imprinting disorders, and has therefore
implicated aberrant imprinting in common obesity susceptibility;
(3) the developmental hypotheses that have been proposed in
these diseases25–28. T2D-DMRs overlap with 191 potentially
imprinted genes with a threefold enrichment (Fisher’s test
P¼ 0.001), and furthermore show a twofold enrichment with
83 confirmed imprinted genes (Fisher’s test P¼ 0.1). This
includes genes previously linked to diabetes and obesity, for

example PRDM16 (refs 29,30). We also find a higher ranking of
DMR p values for the imprinted loci than for randomly sampled
genes that have MeDIP-seq mapping coverage (P¼ 8� 10� 4;
Supplementary Data 7).

DMRs associate with genetic variants. To further investigate the
genetic contribution to the T2D-DMRs, we attempted to identify
methylation quantitative trait loci (mQTL), and thus associate
methylation levels with genotype variation. For cis mQTL, we
tested common SNPs within 50 kb of the T2D-DMRs and found
an enrichment for genetic effects, suggesting that a number of the
disease DMRs have a genetic contribution. Altogether, 397 out of
the 4,545 T2D-DMRs possess a cis mQTL (linear regression
P¼ 8.6� 10� 7, FDR¼ 5%). For example, SNP rs10495903
associates with a DMR 8 kb from the 50 end of THADA
(chr2:43831251–43831750, P¼ 6.7 � 10� 10, b¼ � 11.4) and
SNP rs2086675 associates with an intragenic ANKRD55 (Ankyrin
Repeat Domain 55) DMR (chr5:55464001–55464500; linear
regression P¼ 6.4� 10� 7, b¼ 7.0). We further assessed genetic
trans associations for 757 replicated T2D-DMRs (replication
linear regression Po0.01) in the replication samples. Of these 757
T2D-DMRs, 29 (3.8%) have trans mQTL (linear regression
P¼ 2.4� 10� 8, FDR¼ 5%), but none show significant evidence
that methylation is the mediator of the genetic effect on disease
using the causal inference test31.

Discovery of giDMRs. Using our monozygotic discordant twin
pair model, we are also able to search for epigenetic differences
within genetically identical twins, and we name these regions
‘genetically independent DMRs (giDMRs). Unlike T2D-DMRs
identified from the linear model, which reflect both genetic and
environmental effects on T2D, giDMRs likely represent pure
environmental effects, stochastic mechanisms or consequences of
the disease itself. We find 2 (t-test P¼ 3� 10� 7, FDR¼ 10%)
and 914 (t-test P¼ 1� 10� 4, FDR¼ 25%) T2D giDMRs within
the 17 discordant MZ twin pairs, which overlap 890 genes in total
(including regions up to 20 kb upstream of the gene,
Supplementary Data 8,9). The giDMR genes are significantly
enriched in the Wnt signalling pathway, insulin signalling path-
way and synaptic vesicle cycle (FDR¼ 0.001, 0.003 and 0.004,
respectively Supplementary Data 10). We tested the T2D-
methylation association of the top 20 gene-related giDMRs in the
replication data set of 263 unrelated cases and controls, and find
that three regions validate with same direction of effect at nom-
inal significance (linear regression Po0.05), and a further eight
show the same direction of change. We also observe that three of
the top four DMRs showed the same trend of association in
skeletal muscle in another unrelated cohort of 30 cases and
controls profiled with the Illumina 450k array. Altogether, 175
giDMRs (which mapped to 109 genes) overlap the 4,545 FDR
25% T2D-DMRs from the linear mixed model analyses. The
MALT1 DMRs do not pass the FDR 25% giDMR threshold, but
show modest giDMR effects consistent with the direction of T2D-
DMR association in the primary linear model, suggesting that
they were primarily independent of genetic influences
(chr18:56336501–56337000, P¼ 0.001). The top giDMR, which is
also identified in the primary linear model analyses (discovery
P¼ 3.78� 10� 6 and replication P¼ 0.01), is in the promoter of
the GPR61 (G-protein coupled receptor 61) gene. Knockout
studies of GPR61 in mice exhibit hyperphagia-induced obesity
and higher plasma insulin levels32. The sixth ranked giDMR is in
the PRKCB (protein kinase C, b) gene region, and another top
giDMR is in the PRKCB TSS, and both are hypo-methylated in
T2D cases. Increasing PRKCB levels caused by hyperglycaemia,

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6719

4 NATURE COMMUNICATIONS | 5:5719 | DOI: 10.1038/ncomms6719 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


are involved in insulin resistance33 and elevated PRKCB
expression appears in the vasculature of T2D cases34.

Whole-blood cell subtype analysis. The ideal tissue to study
directly T2D pathophysiology would be the pancreatic b-cells;
however, collection of this biological material is invasive and not
feasible on a large scale. Peripheral blood is the best accessible
alternative tissue that reflects multiple metabolic pathways. Early
developmental epigenetic changes may be present in multiple tissues
and additionally the T2D-associated metabolic syndrome is com-
monly associated with inflammatory processes35–37, which would be
reflected in blood. Furthermore there is high potential clinical utility
for any identified blood-derived epigenetic disease markers.

White blood cell (WBC) subtype proportions have been
previously reported to associate with T2D38,39 and could possibly
confound our associations. We find no significant association
between estimated counts of lymphocytes, neutrophils, eosinophils
and total blood cell counts with DNA methylation levels at the
4,545 (FDR 25%) T2D-DMRs. Only 2 out of the 4,545 DMRs are
weakly associated with monocyte cell counts (chr21:34816251–
34816750 linear regression P¼ 0.01 and chr22:17742501–17743000
linear regression P¼ 0.02). This suggests that differential blood cell
types do not significantly confound the major T2D-methylation
changes observed in our twin analysis.

Medication use. To explore possible effects of T2D medication
on our findings, we first tested for association between methyla-
tion level and medication at time of blood sampling. We find that
2 (0.04%) of 4,545 T2D-DMR are associated with medication
(FDRo0.05). We then divided cases into those on and off
medication at the time of blood sampling as a covariate. After
adjusting for medication, both of these T2D-DMRs are still
nominally associated with T2D status (linear regression P¼ 0.02),
suggesting that medication is not a major confounder.

Conclusion. We have identified potential T2D-related changes in
a genome-wide analysis of the whole-blood DNA methylome.
These are located predominantly around the TSS, but also show
hypermethylation within gene regions. We find DMRs in the
promoters of genes, such as MALT1 and GPR61, where epigenetic
modifications likely act as markers of the disease process, and
where metabolomics data may highlight the chemical sequelae.
Although our MZ twin design can increase power to detect
unbiased biological changes, the relatively small effect sizes
require further replication of the results in an external indepen-
dent cohort. Our study shows the clear scientific and clinical
potential of integrating epigenomics with other omics data for
common complex diseases. This integrated approach has enabled
us to characterize the epigenome, and identify key DNA
methylation changes occurring in both T2D-susceptibility genes
as well as genes altered by the disease progression itself.

Methods
Twins. All participants in the study provided written informed consent in accor-
dance with the St Thomas’ Hospital local ethics research committee. Altogether, 27
pairs of MZ twins (including 17 pairs of T2D-discordant twins, 3 pairs of T2D-
concordant twin and 7 pairs of healthy concordant twin, Supplementary Data 1)
were selected in the discovery phase from the TwinsUK cohort40. Each
participant’s information was collected by interview and questionnaire. Weight and
height were taken on the day of visit and were used to calculate BMI. The zyogsity
is determined by standard zygosity questionnaire and confirmed by genotyping
(60%). We defined T2D status by the serum fasting glucose level test
(Z7 mmol l� 1) and/or self-report of T2D in the questionnaire data. The healthy
twin in discordant twins was required to have a serum fasting glucose level test of
r5 mmol l� 1. The replication sample set was also selected from the TwinsUK
cohort and comprised 42 unrelated T2D cases and 221 controls matched for age,
BMI and sex.

Whole blood was collected at the interview and stored at � 80 �C in EDTA
tubes. DNA was extracted using the Nucleon Genomic DNA Extraction Kit
BACC3 and stored at � 20 �C in TE Buffer. We also obtained WBC subtype
counts. WBC counts were derived from fluorescence activated cell sorting of
peripheral blood. WBC subtype specific cell counts were calculated by multiplying
the proportion of the WBC count of each cell type within the total WBC count
(estimated in thousands of cells per ml), for four cell types in our sample set:
neutrophils, eosinophils, monocytes and lymphocytes.

MeDIP sequencing (MeDIP-seq). All sample preparations and MeDIP sequen-
cing were performed by the BGI-Shenzhen, Shenzhen, China. Extracted DNA was
fragmented using a Covaris sonication system and sequencing libraries were pre-
pared from 5-mg fragmented genomic DNA. End repair, oA4 base addition and
adaptor ligation steps were performed using Illumina’s Paired-End DNA Sample
Prep kit. Adaptor-ligated DNA was immunoprecipitated by anti-5mC using a
commercial antibody (Diagenode) and MeDIP products were validated by quan-
titative PCR. MeDIP DNA was purified with ZYMO DNA Clean & Concentrator-5
columns and amplified using adaptor-mediated PCR. DNA fragments between 200
and 500 bp in size were gel-excised, and the amplification quality and quantity were
evaluated by Agilent BioAnalyzer analysis. The libraries were subjected to highly
parallel 50-bp paired-end sequencing on the Illumina GAII platform. All sequen-
cing data passed initial quality checks for base composition (no exclusions) using
FASTQC (v0.10.0; ref. 41). For each individual, B60 million reads were generated
and mapped onto hg19 using Novoalign V2.07.11 (ref. 42). After removing
duplicates, we filtered data using quality score Q10, paired-end read criteria and
fragment insert-size distribution checks, which resulted in B30 million unique
reads confidently mapped onto the human genome. We quantified methylation
levels using MEDIPs13 producing absolute methylation signals (AMS) and the
mean relative methylation score (RPM) in each 500-bp bin (overlap of 250 bp)
across the genome and these windows were used for the DMR analyses. The
replication samples were profiled following the same procedure as the discovery set,
except they were sequenced using single-end MeDIP-seq. The genetic effects on the
DMRs and the effect of DMRs on T2D were calculated using the AMS in each
DMR. MeDIP-seq data have been deposited in EMBL under the accession code
E-MTAB-3051.

DMR and giDMR discovery. DMRs and giDMRs were calculated using the
MEDIPS RPM values. For T2D DMR estimation, the RPM values at each 500 bp
bin were normalized to N (0, 1; standard normal distribution) before the analysis.
Using a linear mixed effects model, we regressed methylation levels at each 500-bp
window on fixed-effect terms, which included disease status (at the same time as
the visit for the blood and DNA draw), BMI, age (for the blood and DNA with-
draw), sex and random-effect terms denoting family structure. giDMRs were
characterized among 34 (17 pairs) discordant monozygotic twins and p values were
obtained from one-sample parametric t-test to assess whether the mean difference
within twin pair for each DMR was significantly different from 0. Results from the
discovery analyses are presented at a false discovery rate (FDR) of 25% (nominal
P¼ 1� 10� 4), estimated by Benjamini–Hochberg (95) q value43. The effect of
DMR on T2D is calculated using a linear mixed effects model, we regressed AMS
value for each DMR on fixed-effect terms, which included disease status, BMI, age,
sex and random-effect terms denoting family structure.

To investigate the potential effect of medication use and cell subtype bias, we
used records of any diabetes medication use and cell subtype counts data in the
discovery samples. At each of the 4,545 suggestive T2D-DMRs we tested the effect
of medication record and cell subtype data of DNA methylation levels. We fit a
linear mixed effects model—BMI, age, sex, medication use (or cell subtype counts)
were incorporated as fixed-effects and we included a random-effect term denoting
family structure.

Illumina human methylation 450K array. Illumina Human Methylation 450K
array data were used to validate the top T2D DMR results. The Illumina 450K
array methylation values are reported as b, which represent the ratio of array
intensity signal obtained from the methylated beads over the sum of methylated
and unmethylated bead signals44,45.

In the validation, we matched 20 probes from whole-blood Illumina 450K array
for 45 individuals to the top 31 DMRs (Supplementary Data 7). When a probe
overlapped with the DMR, we used it for validation; otherwise, we selected the
nearest probe to the DMRs within 10 kb. The methylation values for each probe
were normalized to N (0, 1) before the analysis. We fitted a linear mixed effects
model regressing methylation levels at each probe on the disease status of the
individuals and included fixed effects (age, sex, BMI, beadchip, BS conversion
efficiency and BS-treated DNA input) and random-effects (family-structure).

We also tested the selected DMRs methylation profile in skeletal muscle
biopsies from 24 T2D patients and 6 controls (non-T2D but obese individuals).

Metabolomic data. Among the 54 MZ twin individuals, 36 had plasma and/or
serum metabolites profiles. Altogether, 503 metabolites were measured using non-
targeted technology gas chromatography–mass spectrometry and liquid
chromatography–mass spectrometry46. Metabolites were reported as median
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normalized, correcting for the interday machine tuning effect by dividing each
metabolite’s value by the median per run for the day. Then, the data were further
standardized before the analyses. For the 36 MZ twins, the mean difference of
metabolite levels within twin pair (affected–unaffected twin) was calculated. One-
sample non-parametric test (Wilcoxon signed-rank test) was calculated to assess
whether the mean difference for each metabolite was significantly different from 0.
50 metabolites nominally associated with DNA methylation (Po0.05) were then
tested in the replication sample set. The meta-analysis of discovery (n¼ 36 IDs)
and replication (n¼ 24 IDs) samples provided the overall p value for the
association between metabolite levels and DNA methylation profiles.

Gene expression profiles. Gene expression results in adipose, skin and
lymphoblastoid cell line tissue was extracted for 590 subjects from MuTHER
study19. Gene expression levels were measured using the Illumina expression array
HumanHT-12 version 3. Each sample had three technical replicates and log2-
transformed expression signals, which were quantile normalized, first across three
replicates of each individual, and then secondly by quantile normalization across all
individuals. We used the transformed normalized residuals of the log-transformed
gene expression array signal in this analysis.

Genotype data. Genotype data for the individuals in this study were obtained on a
combination of Illumina platforms (HumanHap300, HumanHap610Q, 1M-Duo
and 1.2MDuo 1M custom arrays). The genotypes were called with the Illuminus
calling algorithm (maximum posterior probability of 0.95). Imputation was per-
formed using the IMPUTE software package (v2) using two reference panels: P0
(HapMap2, rel 22, combined CEU) and P1 (610Kþ , including the combined
HumanHap610K and 1M array). After imputation, SNPs were filtered for MAF of
45% and IMPUTE info value of 40.8 (ref. 19).

Methylation QTL identification. Cis methylation QTL at DMRs was analysed
using SNPs within 50 kb of the region. For each DMR, the methylation values were
normalized to N (0, 1), and we then fitted a linear model, regressing the methy-
lation levels on fixed-effect terms including genotype, age and gender. Multiple
testing was corrected for by the Bonferroni correction. We further tested whether
methylation acts as a mediator between genotype and phenotype. This was assessed
using the causal inference test8,31. The genetic effect on DMRs was calculated using
a linear mixed effects model, we regressed the RPM value for each DMR on fixed-
effect terms, which included disease status, BMI, age, sex and random-effect terms
denoting family structure.

Trans methylation QTLs at DMRs were analysed in the replication sample
using 2.1M SNPs in the genome (P¼ 2.4� 10� 8, FDR¼ 5%). For each DMR, the
methylation values were normalized to N (0, 1), and we performed association
analyses by using linear regression implemented in PLINK47, assuming additive
genetic effects, with adjustment for age and sex.

Pathway analysis. Pathway analysis was performed using two methods: Cytoscape
v2.83 (ref. 48) and GREAT49. We used DMR or giDMR annotated gene list for
Cytoscape analysis with FDR o0.001. For GREAT, we analysed separately the
T2D-DMR and giDMR regions and applied the regional-based binomial approach
with the maximum distal extension reduced to from 1 Mb to 150 kb.
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