7,907 research outputs found
Process development and pilot-plant production of silane polymers of diols Annual summary report, 22 Apr. 1966 - 22 Apr. 1967
Preparation of cross-linkable linear high molecular weight polyaryloxysilane
Thermodynamics of lattice QCD with 3 flavours of colour-sextet quarks
We have been studying QCD with 2 flavours of colour-sextet quarks to
distinguish whether it is QCD-like or conformal. For comparison we are now
studying QCD with 3 flavours of colour-sextet quarks, which is believed to be
conformal in the chiral limit. Here we present the results of simulations of
lattice QCD with 3 colour-sextet quarks at finite temperatures on lattices of
temporal extent and 6, with masses small enough to yield access to the
chiral limit. As for the 2-flavour case, we find well-separated deconfinement
and chiral-symmetry restoration transitions, both of which move to appreciably
weaker couplings as is increased from 4 to 6. If this theory is
conformal, we would expect there to be a bulk chiral transition at a fixed
coupling. For this reason we conclude that for and 6, the chiral and
hence the deconfinement transitions are in the strong-coupling domain where the
theory is essentially quenched. The similarity between the behaviours of the 2
and 3 flavour theories suggested that the and 6 transitions for the
2-flavour theory also lie in the strong-coupling domain. The phase structure of
both theories is very similar.Comment: 17 pages Latex(Revtex), 7 postscript figure
Simulations of a Scintillator Compton Gamma Imager for Safety and Security
We are designing an all-scintillator Compton gamma imager for use in security
investigations and remediation actions involving radioactive threat material.
To satisfy requirements for a rugged and portable instrument, we have chosen
solid scintillator for the active volumes of both the scatter and absorber
detectors. Using the BEAMnrc/EGSnrc Monte Carlo simulation package, we have
constructed models using four different materials for the scatter detector:
LaBr_3, NaI, CaF_2 and PVT. We have compared the detector performances using
angular resolution, efficiency, and image resolution. We find that while PVT
provides worse performance than that of the detectors based entirely on
inorganic scintillators, all of the materials investigated for the scatter
detector have the potential to provide performance adequate for our purposes.Comment: Revised text and figures, Presented at SORMA West 2008, Published in
IEEE Transactions on Nuclear Scienc
Patent Institutions: Shifting Interactions Between Legal Actors
This contribution to the Research Handbook on Economics of Intellectual Property Rights (Vol. 1 Theory) addresses interactions between the principal legal institutions of the U.S. patent system. It considers legal, strategic, and normative perspectives on these interactions as they have evolved over the last 35 years. Early centralization of power by the U.S. Court of Appeals for the Federal Circuit, newly created in 1982, established a regime dominated by the appellate court\u27s bright-line rules. More recently, aggressive Supreme Court and Congressional intervention have respectively reinvigorated patent law standards and led to significant devolution of power to inferior tribunals, including newly created tribunals like the USPTO\u27s Patent Trial and Appeals Board. This new era in institutional interaction creates a host of fresh empirical and normative research questions for scholars. The contribution concludes by outlining a research agenda
Candidate molecular ions for an electron electric dipole moment experiment
This paper is a theoretical work in support of a newly proposed experiment
(R. Stutz and E. Cornell, Bull. Am. Soc. Phys. 89, 76 2004) that promises
greater sensitivity to measurements of the electron's electric dipole moment
(EDM) based on the trapping of molecular ions. Such an experiment requires the
choice of a suitable molecule that is both experimentally feasible and
possesses an expectation of a reasonable EDM signal. We find that the molecular
ions PtH+, HfH+, and HfF+ are suitable candidates in their low-lying triplet
Delta states. In particular, we anticipate that the effective electric fields
generated inside these molecules are approximately of 73 GV/cm, -17 GV/cm, and
-18 GV/cm respectively. As a byproduct of this discussion, we also explain how
to make estimates of the size of the effective electric field acting in a
molecule, using commercially available, nonrelativistic molecular structure
software.Comment: 25 pages, 3 figures, submitted to Physical Review
Spectroscopy, Equation Of State And Monopole Percolation In Lattice QED With Two Flavors
Non-compact lattice QED with two flavors of light dynamical quarks is
simulated on lattices, and the chiral condensate, monopole density and
susceptibility and the meson masses are measured. Data from relatively high
statistics runs at relatively small bare fermion masses of 0.005, 0.01, 0.02
and 0.03 (lattice units) are presented. Three independent methods of data
analysis indicate that the critical point occurs at and that
the monopole condensation and chiral symmetry breaking transitions are
coincident. The monopole condensation data satisfies finite size scaling
hypotheses with critical indices compatible with four dimensional percolation.
The best chiral equation of state fit produces critical exponents
(, ) which deviate significantly from mean
field expectations. Data for the ratio of the sigma to pion masses produces an
estimate of the critical index in good agreement with chiral
condensate measurements. In the strong coupling phase the ratio of the meson
masses are ,
and , while on the weak coupling side of the
transition , ,
indicating the restoration of chiral symmetry.\footnote{\,^{}}{August 1992}Comment: 21 pages, 24 figures (not included
Thermodynamics of lattice QCD with 2 flavours of colour-sextet quarks: A model of walking/conformal Technicolor
QCD with two flavours of massless colour-sextet quarks is considered as a
model for conformal/walking Technicolor. If this theory possess an infrared
fixed point, as indicated by 2-loop perturbation theory, it is a
conformal(unparticle) field theory. If, on the other hand, a chiral condensate
forms on the weak-coupling side of this would-be fixed point, the theory
remains confining. The only difference between such a theory and regular QCD is
that there is a range of momentum scales over which the coupling constant runs
very slowly (walks). In this first analysis, we simulate the lattice version of
QCD with two flavours of staggered quarks at finite temperatures on lattices of
temporal extent and 6. The deconfinement and chiral-symmetry
restoration couplings give us a measure of the scales associated with
confinement and chiral-symmetry breaking. We find that, in contrast to what is
seen with fundamental quarks, these transition couplings are very different.
for each of these transitions increases significantly from
and as expected for the finite temperature transitions of an
asymptotically-free theory. This suggests a walking rather than a conformal
behaviour, in contrast to what is observed with Wilson quarks. In contrast to
what is found for fundamental quarks, the deconfined phase exhibits states in
which the Polyakov loop is oriented in the directions of all three cube roots
of unity. At very weak coupling the states with complex Polyakov loops undergo
a transition to a state with a real, negative Polyakov loop.Comment: 21 pages, 9 figures, Revtex with postscript figures. One extra
reference was added; text is unchanged. Corrected typographical erro
Bose-Einstein Condensation on a Permanent-Magnet Atom Chip
We have produced a Bose-Einstein condensate on a permanent-magnet atom chip
based on periodically magnetized videotape. We observe the expansion and
dynamics of the condensate in one of the microscopic waveguides close to the
surface. The lifetime for atoms to remain trapped near this dielectric material
is significantly longer than above a metal surface of the same thickness. These
results illustrate the suitability of microscopic permanent-magnet structures
for quantum-coherent preparation and manipulation of cold atoms.Comment: 4 pages, 6 figures, Published in Phys. Rev. A, Rapid Com
Bose-Einstein Condensation on a Permanent-Magnet Atom Chip
We have produced a Bose-Einstein condensate on a permanent-magnet atom chip
based on periodically magnetized videotape. We observe the expansion and
dynamics of the condensate in one of the microscopic waveguides close to the
surface. The lifetime for atoms to remain trapped near this dielectric material
is significantly longer than above a metal surface of the same thickness. These
results illustrate the suitability of microscopic permanent-magnet structures
for quantum-coherent preparation and manipulation of cold atoms.Comment: 4 pages, 6 figures, Published in Phys. Rev. A, Rapid Com
- …