research

Spectroscopy, Equation Of State And Monopole Percolation In Lattice QED With Two Flavors

Abstract

Non-compact lattice QED with two flavors of light dynamical quarks is simulated on 16416^4 lattices, and the chiral condensate, monopole density and susceptibility and the meson masses are measured. Data from relatively high statistics runs at relatively small bare fermion masses of 0.005, 0.01, 0.02 and 0.03 (lattice units) are presented. Three independent methods of data analysis indicate that the critical point occurs at Ξ²=0.225(5)\beta =0.225(5) and that the monopole condensation and chiral symmetry breaking transitions are coincident. The monopole condensation data satisfies finite size scaling hypotheses with critical indices compatible with four dimensional percolation. The best chiral equation of state fit produces critical exponents (Ξ΄=2.31\delta=2.31, Ξ²mag=0.763\beta_{mag}=0.763) which deviate significantly from mean field expectations. Data for the ratio of the sigma to pion masses produces an estimate of the critical index Ξ΄\delta in good agreement with chiral condensate measurements. In the strong coupling phase the ratio of the meson masses are MΟƒ2/Mρ2β‰ˆ0.35M_\sigma^2/M_\rho^2\approx 0.35, MA12/Mρ2β‰ˆ1.4M_{A_1}^2/M_\rho^2\approx 1.4 and MΟ€2/Mρ2β‰ˆ0.0M_\pi^2/M_\rho^2\approx 0.0, while on the weak coupling side of the transition MΟ€2/Mρ2β‰ˆ1.0M_\pi^2/M_\rho^2\approx 1.0, MA12/Mρ2β‰ˆ1.0M_{A_1}^2/M_\rho^2\approx 1.0, indicating the restoration of chiral symmetry.\footnote{\,^{}}{August 1992}Comment: 21 pages, 24 figures (not included

    Similar works

    Full text

    thumbnail-image

    Available Versions