5,427 research outputs found

    Splitting Proofs for Interpolation

    Full text link
    We study interpolant extraction from local first-order refutations. We present a new theoretical perspective on interpolation based on clearly separating the condition on logical strength of the formula from the requirement on the com- mon signature. This allows us to highlight the space of all interpolants that can be extracted from a refutation as a space of simple choices on how to split the refuta- tion into two parts. We use this new insight to develop an algorithm for extracting interpolants which are linear in the size of the input refutation and can be further optimized using metrics such as number of non-logical symbols or quantifiers. We implemented the new algorithm in first-order theorem prover VAMPIRE and evaluated it on a large number of examples coming from the first-order proving community. Our experiments give practical evidence that our work improves the state-of-the-art in first-order interpolation.Comment: 26th Conference on Automated Deduction, 201

    The lifecycle of axisymmetric internal solitary waves

    Get PDF
    The generation and evolution of solitary waves by intrusive gravity currents in an approximate two-layer fluid with equal upper- and lower-layer depths is examined in a cylindrical geometry by way of theory and numerical simulations. The study is limited to vertically symmetric cases in which the density of the intruding fluid is equal to the average density of the ambient. We show that even though the head height of the intrusion decreases, it propagates at a constant speed well beyond 3 lock radii. This is because the strong stratification at the interface supports the formation of a mode-2 solitary wave that surrounds the intrusion head and carries it outwards at a constant speed. The wave and intrusion propagate faster than a linear long wave; therefore, there is strong supporting evidence that the wave is indeed nonlinear. Rectilinear Korteweg-de Vries theory is extended to allow the wave amplitude to decay as <i>r<sup>-p</sup></I> with <i>p</i>=½ and the theory is compared to the observed waves to demonstrate that the width of the wave scales with its amplitude. After propagating beyond 7 lock radii the intrusion runs out of fluid. Thereafter, the wave continues to spread radially at a constant speed, however, the amplitude decreases sufficiently so that linear dispersion dominates and the amplitude decays with distance as <i>r</i><sup>-1</sup>

    Preservation of Erythrocyte Ghost Ultrastructure Achieved by Various Fixatives

    Full text link

    An implementation of Deflate in Coq

    Full text link
    The widely-used compression format "Deflate" is defined in RFC 1951 and is based on prefix-free codings and backreferences. There are unclear points about the way these codings are specified, and several sources for confusion in the standard. We tried to fix this problem by giving a rigorous mathematical specification, which we formalized in Coq. We produced a verified implementation in Coq which achieves competitive performance on inputs of several megabytes. In this paper we present the several parts of our implementation: a fully verified implementation of canonical prefix-free codings, which can be used in other compression formats as well, and an elegant formalism for specifying sophisticated formats, which we used to implement both a compression and decompression algorithm in Coq which we formally prove inverse to each other -- the first time this has been achieved to our knowledge. The compatibility to other Deflate implementations can be shown empirically. We furthermore discuss some of the difficulties, specifically regarding memory and runtime requirements, and our approaches to overcome them

    Towards improved forecasting for offshore wind turbine O&M transfers

    Get PDF
    Failure to adequately account for marine conditions can incur uncertainty in operation and maintenance costs for offshore renewable installations. Winter months with high potential for electricity generation coincide with the conditions where access for maintenance is most challenging. Advancing towards a demonstration of a strategic maintenance approach will assist in both reducing direct costs and associated initial project finance, while informing this with a better understanding of the impact of marine conditions could improve crew transfer vessel logistics and planning. This paper presents historical weather data close to East Anglia One Wind Farm for use in the development of vessel access models. The research provides a forecasting methodology for predicting wave directions at a site close to the wind farm. Improved ability to predict wave direction could improve existing and future modelling of the impact of marine conditions on the speed and fuel usage of vessels. Potential also exists for directional information to be utilised in scheduling transfer operations

    Radar systems for the water resources mission, volume 2

    Get PDF
    The application of synthetic aperture radar (SAR) in monitoring and managing earth resources was examined. The function of spaceborne radar is to provide maps and map imagery to be used for earth resource and oceanographic applications. Spaceborne radar has the capability of mapping the entire United States regardless of inclement weather; however, the imagery must have a high degree of resolution to be meaningful. Attaining this resolution is possible with the SAR system. Imagery of the required quality must first meet mission parameters in the following areas: antenna patterns, azimuth and range ambiguities, coverage, and angle of incidence

    Radar systems for the water resources mission. Volume 4: Appendices E-I

    Get PDF
    The use of a scanning antenna beam for a synthetic aperture system was examined. When the resolution required was modest, the radar did not use all the time the beam was passing a given point on the ground to build a synthetic aperture, so time was available to scan the beam to other positions and build several images at different ranges. The scanning synthetic-aperture radar (SCANSAR) could achieve swathwidths of well over 100 km with modest antenna size. Design considerations for a SCANSAR for hydrologic parameter observation are presented. Because of the high sensitivity to soil moisture at angles of incidence near vertical, a 7 to 22 deg swath was considered for that application. For snow and ice monitoring, a 22 to 37 deg scan was used. Frequencies from X-band to L-band were used in the design studies, but the proposed system operated in C-band at 4.75 GHz. It achieved an azimuth resolution of about 50 meters at all angles, with a range resolution varying from 150 meters at 7 deg to 31 meters at 37 deg. The antenna required an aperture of 3 x 4.16 meters, and the average transmitter power was under 2 watts

    Radar systems for the water resources mission, volume 1

    Get PDF
    The state of the art determination was made for radar measurement of: soil moisture, snow, standing and flowing water, lake and river ice, determination of required spacecraft radar parameters, study of synthetic-aperture radar systems to meet these parametric requirements, and study of techniques for on-board processing of the radar data. Significant new concepts developed include the following: scanning synthetic-aperture radar to achieve wide-swath coverage; single-sideband radar; and comb-filter range-sequential, range-offset SAR processing. The state of the art in radar measurement of water resources parameters is outlined. The feasibility for immediate development of a spacecraft water resources SAR was established. Numerous candidates for the on-board processor were examined

    Wind and wave directional transit time model for offshore wind operation and maintenance

    Get PDF
    Uncertainty in operation and maintenance costs of offshore renewable installations can be incurred through failure to properly account for marine conditions. One such area, vessel utilisation scheduling, requires accurate forecasts of wind and wave conditions to minimise charter costs as well as plant downtime. Additionally, fuel usage and auxiliary costs will increase with longer transfer times. Exploiting auxiliary offshore measurement data and its relation to accessibility constraints could reduce idle charter periods by allowing operatives to better anticipate prevailing site conditions. Existing models omit the effect of direction on operations and fail to account for the complex relations between dependent environmental variables which can impact on operations such as crew transfers, lifting and jacking operations. In this paper, a methodology for improving the forecasting of offshore conditions through incorporating distributed meteorological and marine observations at multiple timescales is presented. Advancing towards a demonstration of a strategic maintenance approach of this kind will assist in both reducing direct costs and associated initial project finance. The developed model will be beneficial to developers and operators as better forecasting of when conditions are suitable for maintenance could reduce costs, lost earnings and improve mobilisation of vessels and technicians

    Radar systems for a polar mission, volume 3, appendices A-D, S, T

    Get PDF
    Success is reported in the radar monitoring of such features of sea ice as concentration, floe size, leads and other water openings, drift, topographic features such as pressure ridges and hummocks, fractures, and a qualitative indication of age and thickness. Scatterometer measurements made north of Alaska show a good correlation with a scattering coefficient with apparent thickness as deduced from ice type analysis of stereo aerial photography. Indications are that frequencies from 9 GHz upward seem to be better for sea ice radar purposes than the information gathered at 0.4 GHz by a scatterometer. Some information indicates that 1 GHz is useful, but not as useful as higher frequencies. Either form of like-polarization can be used and it appears that cross-polarization may be more useful for thickness measurement. Resolution requirements have not been fully established, but most of the systems in use have had poorer resolution than 20 meters. The radar return from sea ice is found to be much different than that from lake ice. Methods to decrease side lobe levels of the Fresnel zone-plate processor and to decrease the memory requirements of a synthetic radar processor are discussed
    corecore