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Abstract. The generation and evolution of solitary waves Laboratory experiments have been performed to examine
by intrusive gravity currents in an approximate two-layer the simplest circumstance of “symmetric” intrusions that
fluid with equal upper- and lower-layer depths is examinedpropagate in an approximate two-layer fluid with equal
in a cylindrical geometry by way of theory and numerical upper- and lower-layer depths in which the intrusion density
simulations. The study is limited to vertically symmetric was the average ambient densiyifter and Simpsoil981,
cases in which the density of the intruding fluid is equal to theFaust and Plate1984 Rooij et al, 1999 Lowe et al,
average density of the ambient. We show that even thougl2002. By symmetry, such studies are equivalent to the
the head height of the intrusion decreases, it propagates atexamination of surface gravity currents moving across a
constant speed well beyond 3 lock radii. This is because thdree-slip boundary with a stratification of the ambient near
strong stratification at the interface supports the formationthe surface, an idealization of the dynamics governing river
of a mode-2 solitary wave that surrounds the intrusion heaglumes Nash et al. 2009. Unlike gravity currents in
and carries it outwards at a constant speed. The wave andniform ambients, which are predicted to decelerate after
intrusion propagate faster than a linear long wave; thereforepropagating 6 to 10 lock lengthf¢ttman and Simpson
there is strong supporting evidence that the wave is indeed 983, symmetric intrusions at sufficiently thick interfaces
nonlinear. Rectilinear Korteweg-de Vries theory is extendedwere found to propagate well beyond this distance at a
to allow the wave amplitude to decayas” with p = % and constant speedVehta et al. 2002 Sutherland and Naylt

the theory is compared to the observed waves to demonstra007). In a rectilinear geometry, intrusions maintained a
that the width of the wave scales with its amplitude. After constant speed beyond 22 lock lengths. For small, but finite
propagating beyond 7 lock radii the intrusion runs out of interface thicknesses, the measured speeds were faster than
fluid. Thereafter, the wave continues to spread radially at ahe linear long wave speed, suggesting that the intrusions first
constant speed, however, the amplitude decreases sufficientbreated a closed-core solitary wave and then were carried by
so that linear dispersion dominates and the amplitude decaythe wave.

with distance as 1. The dynamics of radially spreading gravity currents are
qualitatively different because energy and mass conservation
require the head height to decrease and hence the current
should decelerate soon after release due to the reduction
of the horizontal pressure gradient driving the flow. Lock-
release experimentdH(ppert and Simpsqri98Q Didden

and Maxworthy 1982 Hug, 1996 Hallworth et al, 1996

1 Introduction

A gravity current arises when a fluid of one density flows

horlzpntally Into an amblt_ant fluid o_fadﬁ“ferent, orvarnying, paiterson et al.200§ demonstrated that axisymmetric
density. In a stratified fluid, a gravity current can propagate, . . L
bottom-propagating gravity currents maintain a constant

gguiréz;:;;ir(r;?géa;ernl;?gﬁ: a?oerfwﬁzrl]evtgfofl;peﬁrralir:i :r\:\::erspeed up to 3 lock radii. Thereafter, in the self-similar
. 9 e y y'regime, the position of the front changed:&&, consistent
For this reason, these currents are specifically referred to as

sintrusive aravity currents” or “intrusions” with the prediction of shallow water wave theonguppert
9 y ' and Simpsonl1980. By symmetry,Zemach and Ungarish
(2007 used shallow water theory to extend this prediction

@ @ Correspondence tdB. R. Sutherland to axisymmetric intrusion propagation, again predicting that
= (bsuther@ualberta.ca) the intrusion decelerates shortly after release from the lock.
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Contrary to this prediction, however, full-depth lock cylindrical solitary waves and compare their corresponding
release experiments demonstrated that axisymmetric intruequation with the KdV cylindrical solitary wave equation
sions propagate at a constant speed well beyond 3 lockvhose derivation is given in detail in the Appendix. The
radii (Sutherland and Naylt2007, suggesting that, as formulation of the fully nonlinear simulations and their
in a rectilinear geometry, solitary waves were responsibleresults are presented in Se8t. Conclusions regarding the
for transporting the lock-fluid long distances at a constantcomparison of simulations to weakly nonlinear theories are
speed. This observation puts into question the applicabilitygiven in Sect4.
of shallow water theory, which necessarily filters non-
hydrostatic dynamics.

The theory for internal solitary waves in a cylindrical
geometry is limited. In a rectilinear geometry, the weakly ,
nonlinear Korteweg-de Vries (KdV) model is appropriate if
nonlinearity and nonhydrostatic dispersion are comparable
and Sma”_ Adap“ng the fu”y non“near Dubre”_Jacotin_ Th|S WOI’k inVOlVeS the Study Of I‘adially Spreading intrusions
Long (DJL) equation Dubriel-Jacotin 1937 Long, 1953 and the interfacial waves they generate. We begin by
1956, the large-amplitude structure of steady rectilinear @dapting existing theory for rectilinear gravity currents in
closed-core Davis and Acrivos 1967 Tung et al, 1982 uniform density fluid and in uniformly stratified fluid to
Brown and Christie1998 and leaky Derzho and Grimshaw develop a prediction for the speed of intrusions at interfaces
ZOOD So|itary waves have been modelled. In particular, of arbitrary thickness. This ana|ySiS is restricted to the Study
White and Helfrich(2008 used DJL theory to examine the ©Of symmetric intrusions, meaning that the density of the
propagation of gravity currents and intrusions in a rectilinearintrusion is the average ambient density and the background
geometry. Because this theory assumes the system is iflensity gradient is itself symmetric in the vertical. In
steady state, it is unclear that it can be straightforwardlySect. 3.2, we proceed to compare the observed speed of
adapted to a Cy”ndrica' geometry in Wh|Ch the wave amp“_ radial intrusions with the rectilinear theory prediction and so
tude must decrease with radius and hence in time. evaluate the effect of initial curvature upon setting the radial

Following up upon the work oMiles (1978, Weidman  intrusion speed. Being symmetric, the intrusion can most
and Velarde(1992 developed a theory for axisymmetric efficiently excite a mode-2 interfacial wave, which bulges
internal solitary waves within a stratified ambient fluid. Upwards above and downwards below the mid-depth of the
They predicted an amp“tude dependence upon distance dgterface. We br|eﬂy review the theory for Small-amplitude
r~2/3_ But, in an earlier papaieidman and Zakherf1989 long interfacial waves with this mode-2 structure. Finally,
compared this amplitude prediction with experiments byWe review Korteweg-de Vries (KdV) theory for rectilinear
Maxworthy (1980 and found that the amplitude differed Solitary waves in continuously stratified fluid and then
by up to 34%. They explained that their weakly nonlinear describe an adaptation of this theory for radially spreading
theory did not capture the experimental results becauséolitary waves, which is later compared to observations.
the trapping of the mixed fluid was “a clear manifestation
of strong nonlinear effects”.  They admitted, however, 5 1 Rectilinear speed of a symmetric intrusion at
that their equation was asymptotically inconsistent and so a thick interface
its predictions were not necessarily reliable. The theory

presented byWeidman and Velard¢1992 likewise relies B ] ) ) o
upon inconsistent assumptions. The speed of a rectilinear intrusion at an interface of finite

In this work, we perform the first detailed numerical thickness was first predicted dyngarish (2009 using a
simulations of radially spreading axisymmetric intrusions Shallow water model, although that theory underpredicted
and solitary waves, the results of which are tested againsi1€ experimental speeds measuredrayst and Plat€1984).
laboratory experiments and a heuristic theory that is a/hite and Helfrich(200§ adapted DJL theory to arrive
straightforward adaptation of rectilinear KdV theory. The @t @ fully nonlinear description of intrusions in stratified
fact that the behaviour observed in our simulations more@mbients. Although successful for moderately thick inter-
closely resembles the heuristic prediction and that it differsf@ces. the theory unphysically required the head height of
from the behaviour predicted by the cylindrical KdV equa- the intrusion in a linearly stratified ambient to tend to zero.

tion puts into question the applicability of the latter to solitary N this limit, the theory overpredicted the intrusion speed
waves generated by radial intrusions. measured in experiments and simulationsBwjster et al.

Theory

The paper is organized as follows. In Segf. the (2008.
theoretical speed of a vertically symmetric intrusion is given Here, we take the simplest approach to predict the
as a function of interface thickness and the theories ofintrusion speed while ensuring that our result is in agreement
axisymmetric linear waves and rectilinear solitary waveswith the predictions for two-layer and linearly stratified
are also reviewed. Here we present a heuristic theory fommbients. The background density profibe,is assumed to
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have the piecewise-linear form,

P —f<z<-}%
PR=1 pit+ilp—p) —4<z=% (1)
Pu %<Z<%,

where# is the thickness of the interface apd= %(,Ou +00)

is the average of the upper and lower layer densities. To

take advantage of symmetry, the levek 0 is positioned
at the mid-depth of the fluid, which has a total depgth
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Pu

hr

Pi

The |ntrus|0n can be V|ewed as a symmetnc expan5|on OFIg 1. The domain and the density profile used to derive a theory

a surface- or bottom-propagating gravity current within an
ambient of total deptht = % as illustrated in Figl.

We first formulate the speed of a gravity current with
densityp; moving in an ambient with density given by Ed) (
for 0<z<hr=%. Benjamin (1969 predicted that an
energy conserving gravity current released from a lock of
heightht will propagate into a uniform ambient with a head

height ofa1/2. Assuming the head height changes negligibly

in a stratified ambient, the mean density of the ambient over

the depth of the gravity current is given by

0<é, <05
Pavg=

05< 68, <1,
where s, = 1. The gravity current speed/yc, given by
Benjamin(1968 andUngarish(2006 is

(2=

By extension, the speed of an intrusi@f, moving along the
interface of a stratified fluid with a density profile given by
Eq. () is predicted by combining Eq2)(and @) and letting
ht=H/2to give
(1—8)"?
-1/2
30,

Pu+ (i — pu)dn
IOI + pLAJw_hpi

)

h
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2

Pi — Pavg
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0<s4, <05 @
U;=Up 4
05< 5}, fl,

whereUj is the speed of a symmetric intrusion in a two-layer
fluid

1
UOZZVg[UH' (5)
The reduced gravity/,,, is given by
gl =8 (p.— pu)/ poo. (6)

wherepqg is a characteristic density. In deriving, E4) (ve

have assumed that the intrusion speed is set by the densi®002 Sutherland and Naylt2007).

for the speed of intrusions as a function of interface thickness.
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Fig. 2. Initial intrusion speeds in ambients with piecewise linear
(squares) and hyperbolic tangent (triangles) profiles. These numer-
ically computed speeds (as discussed in Sect. 3.2) are compared
to the predicted rectilinear speed (dashed line) defined by4;q. (
and the linear long wave speed (solid line) defined by HE).(
Experimental speeds, measured ®ytherland and Naulf2007),

are plotted as circles. The largest experimental error bars are also
shown in the lower right hand corner.

2.2 Long small-amplitude waves at a thick interface

Symmetric intrusions may efficiently excite solitary waves
if they travel faster than long mode-2 interfacial waves at
a thick interface. Rectilinear intrusion speeds were thus
compared with long mode-2 waves in the x-z plane with a
piecewise-constant three-layer density profidefita et al.
Here we find the

difference between the mean density of the ambient over thépeed of long axisymmetric interfacial waves in a three-

head height offf/2. As illustrated by the dashed line in
Fig. 2, this intrusion speedl/;, is predicted to decrease as
the relative thickness of the interfac®,, increases. This
formula correctly predicts the rectilinear intrusion speed in
the two-layer limit §, — 0) and in the uniformly stratified
limit (8, — 1).

www.nonlin-processes-geophys.net/17/443/2010/

layer fluid with piecewise-linear background density given
by Eq. ().

By applying no-normal-flow boundary conditions at=
+ % bounded solutions of the streamfunction have the form
Y (r,z,t) = Ay Ji(kr)¢(z)e™'®", whereA,, is the amplitude,

k is the radial wavenumbaes, is the wave frequencyj is the

Nonlin. Processes Geophys., #5312310
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first order Bessel function and, for a mode-2 varicose waveg (x,z,t) = a(x,t)¢(z),

¢ satisfies

smh[k(%—z)} P
sinh[g(H—h)] 2=t=72
$(2) = ;:é@)) —5=z=5 )
sint{k(%+2)] u N
—W —m<< I < -3

Here the vertical wavenumber of disturbances within the

interface is

m:k,/Ng/a)z—l,

(8)
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(12)

in which a(x,7) =a(x — ct) satisfies the KdV equation that
includes the advection term:

ar +coay +yaay + Baxxx =0. (13)

Here the subscripts denote derivatives and the constants
andp are given by Benney 1966

H H
3 [y ¢3dz 1 [ ¢%dz
__cofoH 9: and =§cofoﬁ ¢ 7

)/ =
Jo? #2dz Jo? #2dz
where ¢g is the linear long wave speed. For a stratified

ambient with the density profile given by EQ)(we exploit
symmetry and consider only the upper half of the domain

B (14)

in which the squared buoyancy frequency of the thick (i1 =%). The corresponding vertical structure functign,

interface is
Ngzi(“_p”), ©)
poo h

Using @), kK andw are implicitly related by the dispersion
relation

h k
ktan(%) +m tanh[z (H —h)} =0. (20)
In the long wave limit, this becomes
Noh N
tan( =2 | + =2 (H —h) =0, (11)
2C0 200

whereco = w/k is the long wave speed. This speed is plotted
by the solid line in Fig2. The same result would be found

is given by the long wave limit of Eq7f with 0< z < % and
the long wave speedy, satisfies Eq.X1).

The solution of Eq. 13) which assumes an isolated,
steadily propagating disturbance is

a(x—ct):aosecl%<x;d>.

The speedc¢, and width, A, of the wave depend on the
maximum displacement amplitude,, by

128 1
c:q)—i—zao and Azz—zﬂ—.
3 y ag

(15)

(16)

The KdV coefficients along with the wave speed and width
are shown in Fig3 as functions of interface thickness.
From the numerical simulations, it is easier to diagnose

for rectilinear interfacial waves: the structure of the wavesq siricture of the vertical velocity rather than the vertical

changes, but the long wave speed is the same.
Comparing this result to Eg4), we find that the intrusion
speed is supercritical{ > co) if §;, < 0.5 and subcritical

displacement field. The vertical velocity derived from the
vertical displacement field is

otherwise. Hence, if radially spreading intrusions propagate &

at speeds comparable to those of rectilinear intrusions, we
expect solitary waves will be excited if the intrusion moves

along a sufficiently thin interfacé{ < 0.5) but not so thin

w(x,z,t):E

~ 2.5984,, sech (%”) tanh(x _A“ ) o(2), (17)

that a mode-2 wave cannot be established by the widening of _ o o
the interfaced;, > 0). It should be noted that fully nonlinear in which the coefficient satisfies

waves can exist in a band arouag as described byhite
and Helfrich(2008.

2.3 Internal solitary waves

In a rectilinear geometry, the KdV equation is widely
used to model internal solitary waves in a stratified fluid.

The formulation byBenney (1966 predicts that, in the

2
% ~ 25984,

(18)
where Ay, is defined as the maximum value aof. In
these expressions, the value 2.598 is determined from the
empirically computed maximum value of séténh.

The challenge is to extend these results to describe a
solitary wave that spreads radially. For a solitary wave
spreading as an expanding ring with sufficiently large radius,

Boussinesq approximation, the vertical displacement field, o may assume that the front on any point along the

&, has the form

Nonlin. Processes Geophys., 17, 4433 2010

circumference negligibly feels the curvature of the front but
that the amplitude nonetheless decreases with radias
r~1/2, a result of energy conservation. Thus, by extension

www.nonlin-processes-geophys.net/17/443/2010/
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Fig. 3. (a) Coefficients of the KdV equation as functions of interface thickness. The nonlinear coefficiemshown by the solid line and
the dispersion coefficieng, is shown by the dashed lin¢b) The speedg, (solid line) and widthj, (dashed line) of a rectilinear solitary
wave as a function of interface thickness.

of Eq. (L7), we predict that the vertical velocity field should does not satisfy Eq20) but rather, through manipulation of
evolve as rectilinear KdV theory, satisfies the leading-order equation

1/2 _ _
w 2.598Awo<r—0) / secH (%)tanh(x A6t>¢(z),
r

12 2
a r a
(19) at+co (ar+5>+y(—> |:aar+2_:| +pBamr=0. (21)

ro r

in which the amplitudeAy,o is measured at a distanecg
where the axisymmetric solitary wave is first generated.

For measureddyo, we can use Eqgs.16) and (L8) to Compared to Eq.20), here the nonlinear term is of order

1/2 ;
determine the initial displacement amplitude, the solitary (r/r‘?) ’.Wh'Ch seems tp suggest that the balance between
nonlinearity and dispersion exists for large However, be-

wave speedg, and width,A. As the wave spreads radially, 12 . :

1/2 . ._causea ~ r~+/#, the nonlinear term will eventually become
Aw = Awo(ro/r)”' decreases and these equations preO“Ctne ligible and the motion will then be governed b

that the displacement amplitude and speed should decreadé9"9 9 Y
and its width should increase. Eventually, the amplitude
should be so small that weakly nonlinear effects associated a —0 29
with wave steepening should become so small that lineaft T <0 (“VJFZ)J”%”'_ : (22)

dispersion dominates the evolution.

In @ more rigorous approach, we attempted to adapt thery,ig oquation simply describes a dispersing linear wave and
theory of Weidman and Velard¢1992 for axisymmetric  ,qing the method of stationary phase it can be shown that

internal solitary waves to include the wave amplitude decay: . ;.: ; ; ;
, - in this regime, the equally competing effects of geometrical
asr~1Y2. The method, as outlined in Appendi, results g duaty peing g

. ) . | spreading and dispersion cause the amplitude of a long wave
in the same leading-order equationvésidman and Velarde to decrease as-1.

(1992: Through comparison of these theories with the following
a a? results of numerical simulations, we will show that the

ar+co ("”L Z) +v (“ar+ 5) +Bamr =0, (20)  heuristic solution, Eq. 19), more accurately represents
the life-cycle of axisymmetric solitary waves generated by
in whichy andg are given by Eq.X4). intrusions. Thus we show that the admittedly inconsistently

Consistent with the observation Byeidman and Zakhem derived cylindrical solitary wave equation @eidman and
(1988 concerning the analogous result biles (1978 Velarde(1992 and our extension of it in Appendi, indeed
for surface waves, the cylindrical solitary wave equation isprovide an inaccurate description of axisymmetric solitary
asymptotically inconsistent in that Eq2Q) is valid only  waves. However it must be emphasized that Ej) (s
for r > rg in which case the balance between nonlinearheuristic: whereas the balance in rectilinear KdV theory for
steepening and dispersion may no longer be valid. adisturbance of length isa L2 ~ 1, the nonlinear dispersive

By contrast, the heuristic solution of the form Eq9) is “balance” isaL? ~ r~%?, and so the nature of competition
established for 2 rg. The corresponding vertical displace- between nonlinearity and dispersion changes with radial
ment field of the formu(r, 1) = ag(ro/r)Y/2secl[(r —ct)/A]  distance.

www.nonlin-processes-geophys.net/17/443/2010/ Nonlin. Processes Geophys., #5342610



448 J. M. McMillan and B. R. Sutherland: Axisymmetric internal solitary waves

3 Numerical simulations p(z), given by Eqg. {) and a smooth hyperbolic tangent
profile given by,
3.1 Description of code
_ 2z
Fully nonlinear numerical simulations were performed to p’(z):p"_i(pL_pU)tanh<3h_H> (27)
examine the evolution of axisymmetric solitary waves in a
two-layer Boussinesq fluid with finite interface thickness. For all simulations, the density within the lock was the
The code solves the cylindrical Navier-Stokes equationsaverage ambientdensit@q;:%(pL+pU). The concentration
with the assumption that the azimuthal velocity is zero of the passive tracer field was initially set to unity over
everywhere. The resulting two coupled partial differential 0 < r <rg and zero elsewhere.

equations for the azimuthal vorticity;,, and perturbation Simulations were performed with, = 0.02, 0.1, 0.2,
density,p, fields are given by 0.4, 0.6, 0.8, and 1.0 fop(z) given by Eq. {) and
3,=0.02, 0.1, 0.2, and 0.4 fq¥ (z) given by Eq. 27). All
o __ .9 <£> _w3_§+§3_:0+v<v2§ B £>’ (23)  simulations were completed with an upper layer densiy,
ot or \r dz  po Or r2 of 0.9982g/cm. The lower layer densityp,, was given

values of 1.0515 g/cf 1.0662 g/crd and 1.1047 g/cth
op __ 00 O . db kY2, (24) The physical parameters used in the simulations were
ot or 3z  dz g=980.6cm/é and ppo=1.0g/cn?. To prevent the code

from becoming numerically unstable while maintaining a
where V2 is the Laplacian in cylindrical coordinates. The reasonable computation speed, a spatially varying piecewise-
radial and vertical components of the velocity field are givenlinear viscosity was prescribed in the simulations. To damp
by u andw, respectively. Due to the axisymmetric geometry, out small-scale noise created by the collapse of the lock
a streamfunctionyr, can be defined such that= —%—f and fluid, a viscosity of 0.1 cris was used where 9 r < 2rg.
w=1%_ This is related implicitly to the vorticity field by ~ Further away from the lock, where> 3ro, the physical
value ofv =0.01 cnt/s was used. Between these regions the
viscosity varied linearly with-. The dynamics of the flow
were unaffected using this viscosity because the Reynolds
] ] ] ) numbers were on the order of A@vhich suggests that
Given¢ at a particular time, Fourier-Bessel transforms areyiscosity did not govern the dominant motion. To confirm

used to invert Eq.29) to find y. From this,u andw are  his 4 high resolution simulation with a uniform viscosity
computed and then Eqs23) and @4) are used to advect 4t 0 01 cn?/s was performed, this taking many days rather
the vorF|C|ty_ and density fields. At each time step, a passivey, o many hours to run. The propagation and speed of the
tracer field is also advected. intrusion near the lock remained unchanged. The diffusivity
At the free-slip boundaries, the no-normal flow condition, o ggjt water,, was set to be everywhere equalitpeven
u-A=0, is imposed and it is assumed tigat-0. The nu-  tnoygh its physical value is T8cne/s. The purpose of
merical code approximates spatial derivatives using secondgping this is again for numerical stability. Nonetheless the

order finite difference methods. The evolution equations arg5|ye ofx was sufficiently small that molecular diffusion had
then stepped forward in time using a leap-frog scheme andy negligible influence on the flow.

to minimize time splitting errors, an Euler backstep is taken
every 20time-steps. 3.2 Results

To model the full-depth lock release experiments con-
ducted bySutherland and Naul2007), a domain with @  |n agreement with the experimental observationsSShsher-
radius ofR =45 cm and a height of =10 cm was used. The |and and Nault(2007), axisymmetric intrusions at a thin
equations were solved on a staggered grid with 1025 radiajnterface ¢, < 0.2) were observed to propagate beyond
pOintS and 257 vertical pOintS. To examine the |0ng-time8r0 at a constant Speed as shown in F@ On the
evolution of the system, simulations with a domain radius contrary, axisymmetric gravity currents have been observed

vy Yo (25)

of R =80cm were also performed. to decelerate as early asp4Huppert and SimpsQri98Q
The code was initialized by a density field that mimicked patterson et gl.2006), therefore, it is believed that the
the initial density of the experimental setup, given by stratification of the thin interface allows for the formation
of a wave. The simulations show that intially the wave and
N )P O0<r <ro 26 intrusion propagate outwards together, however, when the
Pinit (1 2) = 5(2) ro<r <R. (26) " intrusion decelerates to a stop, the wave continues to spread

radially. As shown in Fig4, this deceleration, and hence
whererp=6 cm is the radius of the lock. Simulations were separation, was observed to occur at small@r increasing
completed with both a piecewise linear background densityg;,.

Nonlin. Processes Geophys., 17, 4433 2010 www.nonlin-processes-geophys.net/17/443/2010/
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10 . — r , . — was measured. The results of this analysis are illustrated
I 0, = 0.02 l in Fig. 6 where it evident that the wave amplitude initially
sd™ o, = 0.20 decays as,, /2. This behaviour is anticipated on the basis

[|—<— 4, = 0.40
|—e— 4, = 0.60
- - - 4,=0380

of energy conservation for a non-dispersive wave. Beyond
8rg, the wave separates from the intrusion and its amplitude
becomes sufficiently small that linear dispersion increases
¢ the decay rate tg, . This late-time behaviour is consistent
4 5 -7 with the additional effects of linear dispersion on a small
" amplitude wave as discussed in S&R
The observation that the wave initially travels faster than

2 the long wave speed provides evidence that it is nonlinear
1 upon generation. Because we found the amplitude does not
0 — decay as %2 as predicted byVeidman and Velard&1992
0 2 4 6 8 10 for a cylindrical solitary wave, here we take the simplest
t/t approach, of adapting the KdV model to include the observed

amplitude decrease with radiussast/?.

Fig. 4. The location of the intrusion front versus time for The results of the simulation shown in Fi§. were
simulations withp,=1.0530 g/cri and5(z) given by Eq. 0). Ata compared to the theory in Sec2.3 by first estimating
thick interface §;, > 0.60), the intrusion begins to decelerate around the height,//2, of the theoretical interface. Because the
4rg, whereas at a thin interfacéy(< 0.2) the intrusion maintains a simulation’had’ a continuously stratified ambiedy, given
constant speed beyon - , . .

P yoneq3 by Eq. 7), the height at which the vertical velocity was
a maximum {/H ~ 0.15) was assumed to correspond to
z="h/2, where the normalized streamfunction amplitude
satisfiesp (z) = 1. Radial slices of the vertical velocity field
) ) . - X were then taken at several times, as shown in Fg. For
These speeds are plotted in F&for intrusions in ambients each slice, the maximum amplitudé,,, was determined and
with both piecewise linear and hyperbolic tangent profiles Egs. 16) a,nd (18) were solved forg c'andk

and the results are in agreem.ent with those meaeured "N As shown in Fig7b, the profiles collapse onto a theoretical
laboratory experiments (solid circles). Consistent with the ) ) _1/2 .
curve when the amplitude is scaled zb,yl and the radial

rectilinear theory outlined in Se@.1, as the thickness of the : )
interface increases, the intrusion speed decreases. Howev(g),(tent is shifted by &+ cAt and scaled by. It shou_ld be
for all §;,, axisymmetric intrusions travel more slowly than note'd.t'hat the reference location eh2vas chosen to'lgnore
the predicted speed in a rectilinear geometry, given bythe |n|t|el generetlon_of the wave caused by th_e mtrqsmn.
Eq. @). This observation is consistent with axisymmetric For the mte_rmedlate times;fo = 5.0 ar_1d 7.5, the simulation
gravity current experimentsHppert and Simpsor98Q results are in excellent agreement with the theory. However,
Patterson et 812006 and simulationsghang et al.2010, in "’_‘t t/1o = 10'0’. the wave amphtude has become Sma” and
which the observed front speeds were aboBt,. Figure2 linear d|spere|on hes slightly increased the broadenln.g of the
also shows that compared to the long-wave speed, symmetri\e’ave' The shght dlscrepancy aftg = 2.5 can be e>_<pla|n_ed
intrusions travel more quickly i, < 0.4. by the_ strong interaction between the wave and intrusion at
To examine the long-time evolution of the system, side—early tmes.
view snapshots are shown in Figfor a simulation with an
interface thickness df, = 0.2 and an ambient density given 4 conclusions
by Eqg. 7). The intrusion excites a mode-2 varicose wave
which surrounds the intrusion head and carries it outwardg aboratory experiments and numerical simulations show
at a constant speed. During the propagation, some lockhat axisymmetric intrusions propagate at a constant speed
fluid escapes rearward until the intrusion runs out of fluid over distances much longer than 3 lock radii. Their speed
and decelerates to a stop aroung.8eyond this distance, is dependent upon the non-dimensional thickness of the
the wave continues to spread radially at a constant speednterface, decreasing from 8Ly to 0.5U, asé;, increases
This is illustrated by the dashed line in Fi§. where the  from 0— 1. These speeds are up to 20% slower than those
wave’s position,ry, is the location of maximum isopycnal of intrusions in a rectilinear geometry.
displacement at a height of H =0.15. For interfaces satisfying @ 8, < 0.4, the intrusions were
The evolution of the wave amplitudd,y, was determined observed to excite a mode-2 varicose wave that surrounded
by taking a radial time series of the vertical velocity field at the intrusion head. The wave then carried the intrusion
a height ofz/H = 0.15. To ignore interactions of the wave along at a speed greater than the predicted linear long
with the intrusion, the amplitude of the leading wave crestwave speed. Profiles of the wave just above the intrusion

For a range of simulations, the initial intrusion speeds,
C, were measured by calculatingiidir for 2rg < r; < 3ro.
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Fig. 5. Snapshots of the normalized vertical velocity fieldjwmax, Obtained from a numerical simulation of an axisymmetric intrusion in
an ambient fluid with a background densidy, given by Eq27 with a non-dimensional interface thicknessigt= 0.2. The thick black lines

outline the intrusion profile at each time and illustrate that the intrusion head is being carried outward by a wave. In each plot, the vertical

velocity field is normalized by the maximum amplitude of the wave/a§ = 0.5, wheretg =rg/Ug. The colourbar limits are scaled by
J/1/1o—0.5, making it evident that the amplitude of the wave decays from its maximum vahre-&s The wave is observed to propagate
at a constant speed (i~ ); therefore, the amplitude of the wave is decreasingd¢? as is predicted by linear theory.
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Fig. 6. The amplitude of vertical velocityAw, versus radial
position, ry, for the wave at a height of/H = 0.15 (solid
line). A reference amplituded,,,, is defined such thady =

~0.48 - Lo . ) .
Ao (rw/r0) for 2rg < rw < 3ro. The circles correspond to  the cylindrical solitary wave equation suggests that a differ-

t/tg=2.5, 5.0, 7.5 and 10.0, for which wave profiles are illustrated
in Fig. 7. The radial position of the wave versus time is indicated

by the dashed line. A reference time, is defined suchy =

dleW(t —t*) for 4rg < rw < 10rg. The curves are compared with

lines of constant slope as indicated.
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head were compared to a rectilinear solitary wave KdV
theory adapted to a cylindrical geometry in which the wave
amplitude decreased as?/2. The wave profiles collapsed
onto a theoretical curve suggesting that the amplitude decay
was slow enough that it did not significantly affect the
propagation of the wave. From a single measurement of wave
amplitude and the assumption that the amplitude decays as
r~1/2 KdV theory was able to predict the amplitude, speed
and spread of the wave during its nonlinear evolution phase
after generation.

After propagating beyondrg, the intrusion ran out of fluid
and the rate of amplitude decay of the wave increased to
r~1. Through a combination of weakening nonlinearity and
increasing dominance of dispersion, the wave continued to
propagate at a constant speed.

The fact that the solitary wave is observed to evolve closer
to the heuristic prediction Eql9) than to the prediction of

ent mathematical approach should be taken in developing
an appropriate weakly nonlinear theory. Finally, we note
that the KdV solitary wave theory we have adapted does
not account for the leaky closed-core behaviour associated
with a wave carrying fluid associated with an intrusion.

www.nonlin-processes-geophys.net/17/443/2010/
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Fig. 7. (a)Horizontal profiles of the vertical velocity field at a heightd = 0.15. (b) Corresponding normalized and shifted profiles, where
At is the time elapsed sineg, = 2rg, p = —% andA, is a reference amplitude defined in Fy.

The DJL equation, though used to examine intrusions andeq. (A2). In Eulerian coordinates the vertical displacement
large-amplitude solitary waves in a rectilinear geometryfield, &, is related, at leading order, to the velocity fields by
(White and Helfrich 2008, is less well adapted to study 1

axisymmetric intrusions and waves because their dynamw —& 2~ = (r&u);,. (A5)

ics are intrinsically unsteady and identical upstream and 4

downstream boundary conditions cannot straightforwardly '€ linear terms on the left-hand side of EGA1I~(AS)

be assumed. In future work we will adapt this idealized €21 be combined to get a linear operator acting @one.

study to more realistic oceanographic circumstances in ordef "€ corresponding right-hand side of the resulting equation

to predict the behaviour of radially spreading solitary waves9VeS the nonlinear terms which non-negligibly perturb the
generated by river plumes. displacement of moderately large amplitude waves.

To determine the weakly nonlinear evolution equation,
the vertical displacement field is expanded in terms of the

Appendix A amplitude parametes, as follows:

Derivation of the axisymmetric KdV equation E(rz.0) =afo+a’Er+... (A6)

: : “172
with ampltiude decay asr~/ The vertical structure of the leading order solutigp, is

assumed to be separable from the slowly varying horizontal

Weidman and Velardg1992 rigourously extended the space and time dependence in the following way:

theory ofBenney(1966 to derive a formula for the leading

order weakly nonlinear evolution of axisymmetric internal ro\1/2
_ y ution of axisymmetr fo=("2)" AR DD (). (A7)

solitary waves. Here we outline a similar derivation, but we r

futher impose that the amplitude of the wave must decreasgiere R = e(r —ct) is the translating radial co-ordinate

asr~%/2 as required by energy conservation. which varies slowly as measured byFor consistency with
For an incompressible, Boussinesq fluid, the governingthe perturbation analysis that follows, the slow time scale is
equations of motion are taken to ber = ext. Different from the axisymmetric theory
of Weidman and Velard€1992, here we have imposed
poou+ pr = —pooluur +wiz), (A1) energy conservation by requiring the magnitudeggfto
p.+pg=0, (A2) decrease as~'/2 beyond some radiug,. The vertical
_, structure functiong, and the amplitude4, are both of order
pttwp’ =—(upr+wp), (A3)  unity.
1 Inserting Eg. A6) and corresponding expansions for
~(rwyr+w; =0. (A4) ) andp into the governing EqsAL)—(A5) and extracting

i ) . leading order terms i assuming-/rg is large gives
The assumption that the flow is hydrostatic is represented by

L& =0, (A8)
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where the linear operatdt is defined as

L =c§orzz+ N%0g. (A9)

in which N2(z) is the squared buoyancy frequency. Equa-

tions (A8) and @9) result in the ordinary differential
equation for the vertical structure function

c§o”+N%p=0.

In particular, for the piecewise-linear density profile given
by Eq. @), ¢ is given by the long-wave limit of EQ.7;

(A10)
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