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Abstract. The generation and evolution of solitary waves
by intrusive gravity currents in an approximate two-layer
fluid with equal upper- and lower-layer depths is examined
in a cylindrical geometry by way of theory and numerical
simulations. The study is limited to vertically symmetric
cases in which the density of the intruding fluid is equal to the
average density of the ambient. We show that even though
the head height of the intrusion decreases, it propagates at a
constant speed well beyond 3 lock radii. This is because the
strong stratification at the interface supports the formation
of a mode-2 solitary wave that surrounds the intrusion head
and carries it outwards at a constant speed. The wave and
intrusion propagate faster than a linear long wave; therefore,
there is strong supporting evidence that the wave is indeed
nonlinear. Rectilinear Korteweg-de Vries theory is extended
to allow the wave amplitude to decay asr−p with p=

1
2 and

the theory is compared to the observed waves to demonstrate
that the width of the wave scales with its amplitude. After
propagating beyond 7 lock radii the intrusion runs out of
fluid. Thereafter, the wave continues to spread radially at a
constant speed, however, the amplitude decreases sufficiently
so that linear dispersion dominates and the amplitude decays
with distance asr−1.

1 Introduction

A gravity current arises when a fluid of one density flows
horizontally into an ambient fluid of a different, or varying,
density. In a stratified fluid, a gravity current can propagate
at an intermediate level between the upper and lower
boundaries of the ambient along its level of neutral buoyancy.
For this reason, these currents are specifically referred to as
“intrusive gravity currents” or “intrusions”.
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Laboratory experiments have been performed to examine
the simplest circumstance of “symmetric” intrusions that
propagate in an approximate two-layer fluid with equal
upper- and lower-layer depths in which the intrusion density
was the average ambient density (Britter and Simpson, 1981;
Faust and Plate, 1984; Rooij et al., 1999; Lowe et al.,
2002). By symmetry, such studies are equivalent to the
examination of surface gravity currents moving across a
free-slip boundary with a stratification of the ambient near
the surface, an idealization of the dynamics governing river
plumes (Nash et al., 2009). Unlike gravity currents in
uniform ambients, which are predicted to decelerate after
propagating 6 to 10 lock lengths (Rottman and Simpson,
1983), symmetric intrusions at sufficiently thick interfaces
were found to propagate well beyond this distance at a
constant speed (Mehta et al., 2002; Sutherland and Nault,
2007). In a rectilinear geometry, intrusions maintained a
constant speed beyond 22 lock lengths. For small, but finite
interface thicknesses, the measured speeds were faster than
the linear long wave speed, suggesting that the intrusions first
created a closed-core solitary wave and then were carried by
the wave.

The dynamics of radially spreading gravity currents are
qualitatively different because energy and mass conservation
require the head height to decrease and hence the current
should decelerate soon after release due to the reduction
of the horizontal pressure gradient driving the flow. Lock-
release experiments (Huppert and Simpson, 1980; Didden
and Maxworthy, 1982; Huq, 1996; Hallworth et al., 1996;
Patterson et al., 2006) demonstrated that axisymmetric
bottom-propagating gravity currents maintain a constant
speed up to 3 lock radii. Thereafter, in the self-similar
regime, the position of the front changed ast1/2, consistent
with the prediction of shallow water wave theory (Huppert
and Simpson, 1980). By symmetry,Zemach and Ungarish
(2007) used shallow water theory to extend this prediction
to axisymmetric intrusion propagation, again predicting that
the intrusion decelerates shortly after release from the lock.
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Contrary to this prediction, however, full-depth lock
release experiments demonstrated that axisymmetric intru-
sions propagate at a constant speed well beyond 3 lock
radii (Sutherland and Nault, 2007), suggesting that, as
in a rectilinear geometry, solitary waves were responsible
for transporting the lock-fluid long distances at a constant
speed. This observation puts into question the applicability
of shallow water theory, which necessarily filters non-
hydrostatic dynamics.

The theory for internal solitary waves in a cylindrical
geometry is limited. In a rectilinear geometry, the weakly
nonlinear Korteweg-de Vries (KdV) model is appropriate if
nonlinearity and nonhydrostatic dispersion are comparable
and small. Adapting the fully nonlinear Dubreil-Jacotin-
Long (DJL) equation (Dubriel-Jacotin, 1937; Long, 1953,
1956), the large-amplitude structure of steady rectilinear
closed-core (Davis and Acrivos, 1967; Tung et al., 1982;
Brown and Christie, 1998) and leaky (Derzho and Grimshaw,
2007) solitary waves have been modelled. In particular,
White and Helfrich(2008) used DJL theory to examine the
propagation of gravity currents and intrusions in a rectilinear
geometry. Because this theory assumes the system is in
steady state, it is unclear that it can be straightforwardly
adapted to a cylindrical geometry in which the wave ampli-
tude must decrease with radius and hence in time.

Following up upon the work ofMiles (1978), Weidman
and Velarde(1992) developed a theory for axisymmetric
internal solitary waves within a stratified ambient fluid.
They predicted an amplitude dependence upon distance as
r−2/3. But, in an earlier paperWeidman and Zakhem(1988)
compared this amplitude prediction with experiments by
Maxworthy (1980) and found that the amplitude differed
by up to 34%. They explained that their weakly nonlinear
theory did not capture the experimental results because
the trapping of the mixed fluid was “a clear manifestation
of strong nonlinear effects”. They admitted, however,
that their equation was asymptotically inconsistent and so
its predictions were not necessarily reliable. The theory
presented byWeidman and Velarde(1992) likewise relies
upon inconsistent assumptions.

In this work, we perform the first detailed numerical
simulations of radially spreading axisymmetric intrusions
and solitary waves, the results of which are tested against
laboratory experiments and a heuristic theory that is a
straightforward adaptation of rectilinear KdV theory. The
fact that the behaviour observed in our simulations more
closely resembles the heuristic prediction and that it differs
from the behaviour predicted by the cylindrical KdV equa-
tion puts into question the applicability of the latter to solitary
waves generated by radial intrusions.

The paper is organized as follows. In Sect.2, the
theoretical speed of a vertically symmetric intrusion is given
as a function of interface thickness and the theories of
axisymmetric linear waves and rectilinear solitary waves
are also reviewed. Here we present a heuristic theory for

cylindrical solitary waves and compare their corresponding
equation with the KdV cylindrical solitary wave equation
whose derivation is given in detail in the Appendix. The
formulation of the fully nonlinear simulations and their
results are presented in Sect.3. Conclusions regarding the
comparison of simulations to weakly nonlinear theories are
given in Sect.4.

2 Theory

This work involves the study of radially spreading intrusions
and the interfacial waves they generate. We begin by
adapting existing theory for rectilinear gravity currents in
uniform density fluid and in uniformly stratified fluid to
develop a prediction for the speed of intrusions at interfaces
of arbitrary thickness. This analysis is restricted to the study
of symmetric intrusions, meaning that the density of the
intrusion is the average ambient density and the background
density gradient is itself symmetric in the vertical. In
Sect. 3.2, we proceed to compare the observed speed of
radial intrusions with the rectilinear theory prediction and so
evaluate the effect of initial curvature upon setting the radial
intrusion speed. Being symmetric, the intrusion can most
efficiently excite a mode-2 interfacial wave, which bulges
upwards above and downwards below the mid-depth of the
interface. We briefly review the theory for small-amplitude
long interfacial waves with this mode-2 structure. Finally,
we review Korteweg-de Vries (KdV) theory for rectilinear
solitary waves in continuously stratified fluid and then
describe an adaptation of this theory for radially spreading
solitary waves, which is later compared to observations.

2.1 Rectilinear speed of a symmetric intrusion at
a thick interface

The speed of a rectilinear intrusion at an interface of finite
thickness was first predicted byUngarish (2005) using a
shallow water model, although that theory underpredicted
the experimental speeds measured byFaust and Plate(1984).
White and Helfrich(2008) adapted DJL theory to arrive
at a fully nonlinear description of intrusions in stratified
ambients. Although successful for moderately thick inter-
faces, the theory unphysically required the head height of
the intrusion in a linearly stratified ambient to tend to zero.
In this limit, the theory overpredicted the intrusion speed
measured in experiments and simulations byBolster et al.
(2008).

Here, we take the simplest approach to predict the
intrusion speed while ensuring that our result is in agreement
with the predictions for two-layer and linearly stratified
ambients. The background density profile,ρ̄, is assumed to
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have the piecewise-linear form,

ρ̄(z)=


ρL −

H
2 < z <−

h
2

ρi +
z
h
(ρU −ρL) −

h
2 ≤ z ≤

h
2

ρU
h
2 < z < H

2 ,

(1)

whereh is the thickness of the interface andρi =
1
2(ρU +ρL)

is the average of the upper and lower layer densities. To
take advantage of symmetry, the levelz = 0 is positioned
at the mid-depth of the fluid, which has a total depthH .
The intrusion can be viewed as a symmetric expansion of
a surface- or bottom-propagating gravity current within an
ambient of total depthhT =

H
2 , as illustrated in Fig.1.

We first formulate the speed of a gravity current with
densityρi moving in an ambient with density given by Eq. (1)
for 0 ≤ z ≤ hT ≡

H
2 . Benjamin (1968) predicted that an

energy conserving gravity current released from a lock of
heighthT will propagate into a uniform ambient with a head
height ofhT/2. Assuming the head height changes negligibly
in a stratified ambient, the mean density of the ambient over
the depth of the gravity current is given by

ρavg=

{
ρU +(ρi −ρU)δh 0≤ δh ≤ 0.5

ρi +
ρU−ρi

4δh
0.5< δh ≤ 1,

(2)

where δh =
h
H

. The gravity current speed,Ugc, given by
Benjamin(1968) andUngarish(2006) is

Ugc=
1

2

√
g

(
ρi −ρavg

ρ00

)
hT. (3)

By extension, the speed of an intrusion,Ui , moving along the
interface of a stratified fluid with a density profile given by
Eq. (1) is predicted by combining Eqs. (2) and (3) and letting
hT =H/2 to give

Ui =U0

{
(1−δh)

1/2 0≤ δh ≤ 0.5

1
2 δ

−1/2
h 0.5< δh ≤ 1,

(4)

whereU0 is the speed of a symmetric intrusion in a two-layer
fluid

U0 =
1

4

√
g′

LUH. (5)

The reduced gravity,g′
LU, is given by

g′
LU = g(ρL −ρU)/ρ00, (6)

whereρ00 is a characteristic density. In deriving, Eq. (4) we
have assumed that the intrusion speed is set by the density
difference between the mean density of the ambient over the
head height ofH/2. As illustrated by the dashed line in
Fig. 2, this intrusion speed,Ui , is predicted to decrease as
the relative thickness of the interface,δh, increases. This
formula correctly predicts the rectilinear intrusion speed in
the two-layer limit (δh → 0) and in the uniformly stratified
limit (δh→ 1).

ρi

hT

1

2
hT h

2

1

2
(hT−h)

ρU

ρi

Fig. 1. The domain and the density profile used to derive a theory
for the speed of intrusions as a function of interface thickness.
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Fig. 2. Initial intrusion speeds in ambients with piecewise linear
(squares) and hyperbolic tangent (triangles) profiles. These numer-
ically computed speeds (as discussed in Sect. 3.2) are compared
to the predicted rectilinear speed (dashed line) defined by Eq. (4)
and the linear long wave speed (solid line) defined by Eq. (11).
Experimental speeds, measured bySutherland and Nault(2007),
are plotted as circles. The largest experimental error bars are also
shown in the lower right hand corner.

2.2 Long small-amplitude waves at a thick interface

Symmetric intrusions may efficiently excite solitary waves
if they travel faster than long mode-2 interfacial waves at
a thick interface. Rectilinear intrusion speeds were thus
compared with long mode-2 waves in the x-z plane with a
piecewise-constant three-layer density profile (Mehta et al.,
2002; Sutherland and Nault, 2007). Here we find the
speed of long axisymmetric interfacial waves in a three-
layer fluid with piecewise-linear background density given
by Eq. (1).

By applying no-normal-flow boundary conditions atz =

±
H
2 , bounded solutions of the streamfunction have the form

ψ(r,z,t)=AψJ1(kr)φ(z)e
−iωt , whereAψ is the amplitude,

k is the radial wavenumber,ω is the wave frequency,J1 is the
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first order Bessel function and, for a mode-2 varicose wave,
φ satisfies

φ(z)=



sinh
[
k
(
H
2 −z

)]
sinh

[
k
2 (H−h)

] h
2 < z < H

2

sin(mz)

sin
(
mh
2

) −
h
2 ≤ z ≤

h
2

−
sinh

[
k
(
H
2 +z

)]
sinh

[
k
2 (H−h)

] −
H
2 < z <−

h
2 .

(7)

Here the vertical wavenumber of disturbances within the
interface is

m= k

√
N2

0/ω
2−1, (8)

in which the squared buoyancy frequency of the thick
interface is

N2
0 =

g

ρ00

(ρL −ρU)

h
. (9)

Using (8), k andω are implicitly related by the dispersion
relation

k tan

(
mh

2

)
+m tanh

[
k

2
(H −h)

]
= 0. (10)

In the long wave limit, this becomes

tan

(
N0h

2c0

)
+
N0

2c0
(H −h)= 0, (11)

wherec0 =ω/k is the long wave speed. This speed is plotted
by the solid line in Fig.2. The same result would be found
for rectilinear interfacial waves: the structure of the waves
changes, but the long wave speed is the same.

Comparing this result to Eq. (4), we find that the intrusion
speed is supercritical (Ui > c0) if δh . 0.5 and subcritical
otherwise. Hence, if radially spreading intrusions propagate
at speeds comparable to those of rectilinear intrusions, we
expect solitary waves will be excited if the intrusion moves
along a sufficiently thin interface (δh . 0.5) but not so thin
that a mode-2 wave cannot be established by the widening of
the interface (δh > 0). It should be noted that fully nonlinear
waves can exist in a band aroundc0, as described byWhite
and Helfrich(2008).

2.3 Internal solitary waves

In a rectilinear geometry, the KdV equation is widely
used to model internal solitary waves in a stratified fluid.
The formulation byBenney (1966) predicts that, in the
Boussinesq approximation, the vertical displacement field,
ξ , has the form

ξ(x,z,t)= a(x,t)φ(z), (12)

in which a(x,t)= a(x− ct) satisfies the KdV equation that
includes the advection term:

at +c0ax+γ aax+βaxxx = 0. (13)

Here the subscripts denote derivatives and the constantsγ

andβ are given by (Benney, 1966)

γ =
3

2
c0

∫ H
2

0 φ3
z dz∫ H

2
0 φ2

z dz

and β =
1

2
c0

∫ H
2

0 φ2dz∫ H
2

0 φ2
z dz

, (14)

where c0 is the linear long wave speed. For a stratified
ambient with the density profile given by Eq. (1), we exploit
symmetry and consider only the upper half of the domain
(hT =

H
2 ). The corresponding vertical structure function,φ,

is given by the long wave limit of Eq. (7) with 0≤ z≤
H
2 and

the long wave speed,c0, satisfies Eq. (11).
The solution of Eq. (13) which assumes an isolated,

steadily propagating disturbance is

a(x−ct)= a0 sech2
(
x−ct

λ

)
. (15)

The speed,c, and width, λ, of the wave depend on the
maximum displacement amplitude,a0, by

c= c0+
γ

3
a0 and λ2

=
12β

γ

1

a0
. (16)

The KdV coefficients along with the wave speed and width
are shown in Fig.3 as functions of interface thickness.

From the numerical simulations, it is easier to diagnose
the structure of the vertical velocity rather than the vertical
displacement field. The vertical velocity derived from the
vertical displacement field is

w(x, z,t)=
∂ξ

∂t

' 2.598Aw sech2
(
x−ct

λ

)
tanh

(
x−ct

λ

)
φ(z), (17)

in which the coefficient satisfies

2a0c

λ
' 2.598Aw, (18)

where Aw is defined as the maximum value ofw. In
these expressions, the value 2.598 is determined from the
empirically computed maximum value of sech2tanh.

The challenge is to extend these results to describe a
solitary wave that spreads radially. For a solitary wave
spreading as an expanding ring with sufficiently large radius,
we may assume that the front on any point along the
circumference negligibly feels the curvature of the front but
that the amplitude nonetheless decreases with radiusr as
r−1/2, a result of energy conservation. Thus, by extension
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Fig. 3. (a)Coefficients of the KdV equation as functions of interface thickness. The nonlinear coefficient,γ , is shown by the solid line and
the dispersion coefficient,β, is shown by the dashed line.(b) The speed,c, (solid line) and width,λ, (dashed line) of a rectilinear solitary
wave as a function of interface thickness.

of Eq. (17), we predict that the vertical velocity field should
evolve as

w' 2.598Aw0

( r0
r

)1/2
sech2

(
x−ct

λ

)
tanh

(
x−ct

λ

)
φ(z),

(19)

in which the amplitudeAw0 is measured at a distancer0
where the axisymmetric solitary wave is first generated.

For measuredAw0, we can use Eqs. (16) and (18) to
determine the initial displacement amplitude,a0, the solitary
wave speed,c, and width,λ. As the wave spreads radially,
Aw = Aw0(r0/r)

1/2 decreases and these equations predict
that the displacement amplitude and speed should decrease
and its width should increase. Eventually, the amplitude
should be so small that weakly nonlinear effects associated
with wave steepening should become so small that linear
dispersion dominates the evolution.

In a more rigorous approach, we attempted to adapt the
theory of Weidman and Velarde(1992) for axisymmetric
internal solitary waves to include the wave amplitude decay
as r−1/2. The method, as outlined in AppendixA, results
in the same leading-order equation asWeidman and Velarde
(1992):

at +c0

(
ar +

a

2r

)
+γ

(
aar +

a2

2r

)
+βarrr = 0, (20)

in whichγ andβ are given by Eq. (14).
Consistent with the observation byWeidman and Zakhem

(1988) concerning the analogous result byMiles (1978)
for surface waves, the cylindrical solitary wave equation is
asymptotically inconsistent in that Eq. (20) is valid only
for r � r0 in which case the balance between nonlinear
steepening and dispersion may no longer be valid.

By contrast, the heuristic solution of the form Eq. (19) is
established forr & r0. The corresponding vertical displace-
ment field of the forma(r,t)= a0(r0/r)

1/2sech2[(r−ct)/λ]

does not satisfy Eq. (20) but rather, through manipulation of
rectilinear KdV theory, satisfies the leading-order equation

at +c0

(
ar +

a

2r

)
+γ

(
r

r0

)1/2
[
aar +

a2

2r

]
+βarrr = 0. (21)

Compared to Eq. (20), here the nonlinear term is of order
(r/r0)

1/2, which seems to suggest that the balance between
nonlinearity and dispersion exists for larger. However, be-
causea∼ r−1/2, the nonlinear term will eventually become
negligible and the motion will then be governed by

at +c0

(
ar +

a

2r

)
+βarrr = 0. (22)

This equation simply describes a dispersing linear wave and
using the method of stationary phase it can be shown that
in this regime, the equally competing effects of geometrical
spreading and dispersion cause the amplitude of a long wave
to decrease asr−1.

Through comparison of these theories with the following
results of numerical simulations, we will show that the
heuristic solution, Eq. (19), more accurately represents
the life-cycle of axisymmetric solitary waves generated by
intrusions. Thus we show that the admittedly inconsistently
derived cylindrical solitary wave equation ofWeidman and
Velarde(1992) and our extension of it in AppendixA, indeed
provide an inaccurate description of axisymmetric solitary
waves. However it must be emphasized that Eq. (21) is
heuristic: whereas the balance in rectilinear KdV theory for
a disturbance of lengthL is aL2

∼ 1, the nonlinear dispersive
“balance” isaL2

∼ r−1/2, and so the nature of competition
between nonlinearity and dispersion changes with radial
distance.
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3 Numerical simulations

3.1 Description of code

Fully nonlinear numerical simulations were performed to
examine the evolution of axisymmetric solitary waves in a
two-layer Boussinesq fluid with finite interface thickness.
The code solves the cylindrical Navier-Stokes equations
with the assumption that the azimuthal velocity is zero
everywhere. The resulting two coupled partial differential
equations for the azimuthal vorticity,ζ , and perturbation
density,ρ, fields are given by

∂ζ

∂t
= −ur

∂

∂r

(
ζ

r

)
−w

∂ζ

∂z
+
g

ρ0

∂ρ

∂r
+ν

(
∇

2ζ −
ζ

r2

)
, (23)

∂ρ

∂t
= −u

∂ρ

∂r
−w

∂ρ

∂z
−w

dρ̄

dz
+κ∇2ρ, (24)

where∇
2 is the Laplacian in cylindrical coordinates. The

radial and vertical components of the velocity field are given
by u andw, respectively. Due to the axisymmetric geometry,
a streamfunction,ψ , can be defined such thatu= −

∂ψ
∂z

and

w=
1
r
∂ψ
∂r

. This is related implicitly to the vorticity field by

∇
2ψ−

ψ

r2
= −ζ. (25)

Givenζ at a particular time, Fourier-Bessel transforms are
used to invert Eq. (25) to find ψ . From this,u andw are
computed and then Eqs. (23) and (24) are used to advect
the vorticity and density fields. At each time step, a passive
tracer field is also advected.

At the free-slip boundaries, the no-normal flow condition,
u · n̂ = 0, is imposed and it is assumed thatζ = 0. The nu-
merical code approximates spatial derivatives using second-
order finite difference methods. The evolution equations are
then stepped forward in time using a leap-frog scheme and,
to minimize time splitting errors, an Euler backstep is taken
every 20 time-steps.

To model the full-depth lock release experiments con-
ducted bySutherland and Nault(2007), a domain with a
radius ofR = 45 cm and a height ofH = 10 cm was used. The
equations were solved on a staggered grid with 1025 radial
points and 257 vertical points. To examine the long-time
evolution of the system, simulations with a domain radius
of R = 80 cm were also performed.

The code was initialized by a density field that mimicked
the initial density of the experimental setup, given by

ρinit(r,z)=

{
ρi 0< r < r0

ρ̄(z) r0< r <R.
(26)

wherer0=6 cm is the radius of the lock. Simulations were
completed with both a piecewise linear background density,

ρ̄(z), given by Eq. (1) and a smooth hyperbolic tangent
profile given by,

ρ̄t (z)= ρi−
1

2
(ρL −ρU)tanh

(
2z

δhH

)
(27)

For all simulations, the density within the lock was the
average ambient density,ρi = 1

2(ρL +ρU). The concentration
of the passive tracer field was initially set to unity over
0< r < r0 and zero elsewhere.

Simulations were performed withδh = 0.02, 0.1, 0.2,
0.4, 0.6, 0.8, and 1.0 for̄ρ(z) given by Eq. (1) and
δh = 0.02, 0.1, 0.2, and 0.4 for̄ρt (z) given by Eq. (27). All
simulations were completed with an upper layer density,ρU,
of 0.9982 g/cm3. The lower layer density,ρL, was given
values of 1.0515 g/cm3, 1.0662 g/cm3 and 1.1047 g/cm3.

The physical parameters used in the simulations were
g = 980.6 cm/s2 and ρ00=1.0 g/cm3. To prevent the code
from becoming numerically unstable while maintaining a
reasonable computation speed, a spatially varying piecewise-
linear viscosity was prescribed in the simulations. To damp
out small-scale noise created by the collapse of the lock
fluid, a viscosity of 0.1 cm2/s was used where 0< r < 2r0.
Further away from the lock, wherer > 3r0, the physical
value ofν = 0.01 cm2/s was used. Between these regions the
viscosity varied linearly withr. The dynamics of the flow
were unaffected using this viscosity because the Reynolds
numbers were on the order of 103 which suggests that
viscosity did not govern the dominant motion. To confirm
this, a high resolution simulation with a uniform viscosity
of 0.01 cm2/s was performed, this taking many days rather
than many hours to run. The propagation and speed of the
intrusion near the lock remained unchanged. The diffusivity
of salt water,κ, was set to be everywhere equal toν, even
though its physical value is 10−5 cm2/s. The purpose of
doing this is again for numerical stability. Nonetheless the
value ofκ was sufficiently small that molecular diffusion had
a negligible influence on the flow.

3.2 Results

In agreement with the experimental observations bySuther-
land and Nault(2007), axisymmetric intrusions at a thin
interface (δh ≤ 0.2) were observed to propagate beyond
8r0 at a constant speed as shown in Fig.4. On the
contrary, axisymmetric gravity currents have been observed
to decelerate as early as 4r0 (Huppert and Simpson, 1980;
Patterson et al., 2006), therefore, it is believed that the
stratification of the thin interface allows for the formation
of a wave. The simulations show that intially the wave and
intrusion propagate outwards together, however, when the
intrusion decelerates to a stop, the wave continues to spread
radially. As shown in Fig.4, this deceleration, and hence
separation, was observed to occur at smallerr for increasing
δh.
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Fig. 4. The location of the intrusion front versus time for
simulations withρL=1.0530 g/cm3 andρ̄(z) given by Eq. (1). At a
thick interface (δh≥ 0.60), the intrusion begins to decelerate around
4r0, whereas at a thin interface (δh ≤ 0.2) the intrusion maintains a
constant speed beyond 8r0.

For a range of simulations, the initial intrusion speeds,
C, were measured by calculating dri /dt for 2r0 ≤ ri ≤ 3r0.
These speeds are plotted in Fig.2 for intrusions in ambients
with both piecewise linear and hyperbolic tangent profiles
and the results are in agreement with those measured in
laboratory experiments (solid circles). Consistent with the
rectilinear theory outlined in Sect.2.1, as the thickness of the
interface increases, the intrusion speed decreases. However,
for all δh, axisymmetric intrusions travel more slowly than
the predicted speed in a rectilinear geometry, given by
Eq. (4). This observation is consistent with axisymmetric
gravity current experiments (Huppert and Simpson, 1980;
Patterson et al., 2006) and simulations (Zhang et al., 2010), in
which the observed front speeds were about 0.8Ugc. Figure2
also shows that compared to the long-wave speed, symmetric
intrusions travel more quickly ifδh. 0.4.

To examine the long-time evolution of the system, side-
view snapshots are shown in Fig.5 for a simulation with an
interface thickness ofδh = 0.2 and an ambient density given
by Eq. (27). The intrusion excites a mode-2 varicose wave
which surrounds the intrusion head and carries it outwards
at a constant speed. During the propagation, some lock
fluid escapes rearward until the intrusion runs out of fluid
and decelerates to a stop around 8r0. Beyond this distance,
the wave continues to spread radially at a constant speed.
This is illustrated by the dashed line in Fig.6, where the
wave’s position,rw, is the location of maximum isopycnal
displacement at a height ofz/H = 0.15.

The evolution of the wave amplitude,Aw, was determined
by taking a radial time series of the vertical velocity field at
a height ofz/H = 0.15. To ignore interactions of the wave
with the intrusion, the amplitude of the leading wave crest

was measured. The results of this analysis are illustrated
in Fig. 6 where it evident that the wave amplitude initially
decays asr−1/2

w . This behaviour is anticipated on the basis
of energy conservation for a non-dispersive wave. Beyond
8r0, the wave separates from the intrusion and its amplitude
becomes sufficiently small that linear dispersion increases
the decay rate tor−1

w . This late-time behaviour is consistent
with the additional effects of linear dispersion on a small
amplitude wave as discussed in Sect.2.3.

The observation that the wave initially travels faster than
the long wave speed provides evidence that it is nonlinear
upon generation. Because we found the amplitude does not
decay asr−2/3 as predicted byWeidman and Velarde(1992)
for a cylindrical solitary wave, here we take the simplest
approach, of adapting the KdV model to include the observed
amplitude decrease with radius asr−1/2.

The results of the simulation shown in Fig.5 were
compared to the theory in Sect.2.3 by first estimating
the height,h/2, of the theoretical interface. Because the
simulation had a continuously stratified ambient,ρ̄t , given
by Eq. (27), the height at which the vertical velocity was
a maximum (z/H ' 0.15) was assumed to correspond to
z = h/2, where the normalized streamfunction amplitude
satisfiesφ(z)= 1. Radial slices of the vertical velocity field
were then taken at several times, as shown in Fig.7a. For
each slice, the maximum amplitude,Aw, was determined and
Eqs. (16) and (18) were solved fora0, c andλ.

As shown in Fig.7b, the profiles collapse onto a theoretical
curve when the amplitude is scaled byr−1/2

w and the radial
extent is shifted by 2r0+c1t and scaled byλ. It should be
noted that the reference location of 2r0 was chosen to ignore
the initial generation of the wave caused by the intrusion.
For the intermediate times,t/t0 = 5.0 and 7.5, the simulation
results are in excellent agreement with the theory. However,
at t/t0 = 10.0, the wave amplitude has become small and
linear dispersion has slightly increased the broadening of the
wave. The slight discrepancy att/t0 = 2.5 can be explained
by the strong interaction between the wave and intrusion at
early times.

4 Conclusions

Laboratory experiments and numerical simulations show
that axisymmetric intrusions propagate at a constant speed
over distances much longer than 3 lock radii. Their speed
is dependent upon the non-dimensional thickness of the
interface, decreasing from 0.8U0 to 0.5U0 as δh increases
from 0→ 1. These speeds are up to 20% slower than those
of intrusions in a rectilinear geometry.

For interfaces satisfying 0<δh . 0.4, the intrusions were
observed to excite a mode-2 varicose wave that surrounded
the intrusion head. The wave then carried the intrusion
along at a speed greater than the predicted linear long
wave speed. Profiles of the wave just above the intrusion
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Fig. 5. Snapshots of the normalized vertical velocity field,w/wmax, obtained from a numerical simulation of an axisymmetric intrusion in
an ambient fluid with a background density,ρ̄t , given by Eq.27with a non-dimensional interface thickness ofδh= 0.2. The thick black lines
outline the intrusion profile at each time and illustrate that the intrusion head is being carried outward by a wave. In each plot, the vertical
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t/t0−0.5, making it evident that the amplitude of the wave decays from its maximum value ast−1/2. The wave is observed to propagate

at a constant speed (i.e.r ∼ t); therefore, the amplitude of the wave is decreasing asr−1/2 as is predicted by linear theory.
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Fig. 6. The amplitude of vertical velocity,Aw, versus radial
position, rw, for the wave at a height ofz/H = 0.15 (solid
line). A reference amplitude,Aw0, is defined such thatAw =

Aw0(rw/r0)
−0.48 for 2r0 ≤ rw ≤ 3r0. The circles correspond to

t/t0 = 2.5, 5.0, 7.5 and 10.0, for which wave profiles are illustrated
in Fig. 7. The radial position of the wave versus time is indicated
by the dashed line. A reference time,t∗, is defined suchrw =
drw
dt (t − t

∗) for 4r0 ≤ rw ≤ 10r0. The curves are compared with
lines of constant slope as indicated.

head were compared to a rectilinear solitary wave KdV
theory adapted to a cylindrical geometry in which the wave
amplitude decreased asr−1/2. The wave profiles collapsed
onto a theoretical curve suggesting that the amplitude decay
was slow enough that it did not significantly affect the
propagation of the wave. From a single measurement of wave
amplitude and the assumption that the amplitude decays as
r−1/2, KdV theory was able to predict the amplitude, speed
and spread of the wave during its nonlinear evolution phase
after generation.

After propagating beyond 8r0, the intrusion ran out of fluid
and the rate of amplitude decay of the wave increased to
r−1. Through a combination of weakening nonlinearity and
increasing dominance of dispersion, the wave continued to
propagate at a constant speed.

The fact that the solitary wave is observed to evolve closer
to the heuristic prediction Eq. (19) than to the prediction of
the cylindrical solitary wave equation suggests that a differ-
ent mathematical approach should be taken in developing
an appropriate weakly nonlinear theory. Finally, we note
that the KdV solitary wave theory we have adapted does
not account for the leaky closed-core behaviour associated
with a wave carrying fluid associated with an intrusion.
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The DJL equation, though used to examine intrusions and
large-amplitude solitary waves in a rectilinear geometry
(White and Helfrich, 2008), is less well adapted to study
axisymmetric intrusions and waves because their dynam-
ics are intrinsically unsteady and identical upstream and
downstream boundary conditions cannot straightforwardly
be assumed. In future work we will adapt this idealized
study to more realistic oceanographic circumstances in order
to predict the behaviour of radially spreading solitary waves
generated by river plumes.

Appendix A

Derivation of the axisymmetric KdV equation
with ampltiude decay asr−1/2

Weidman and Velarde(1992) rigourously extended the
theory ofBenney(1966) to derive a formula for the leading
order weakly nonlinear evolution of axisymmetric internal
solitary waves. Here we outline a similar derivation, but we
futher impose that the amplitude of the wave must decrease
asr−1/2 as required by energy conservation.

For an incompressible, Boussinesq fluid, the governing
equations of motion are

ρ00ut +pr = −ρ00(uur +wuz), (A1)

pz+ρg= 0, (A2)

ρt +wρ̄
′
= −(uρr +wρz), (A3)

1

r
(ru)r +wz = 0. (A4)

The assumption that the flow is hydrostatic is represented by

Eq. (A2). In Eulerian coordinates the vertical displacement
field, ξ , is related, at leading order, to the velocity fields by

w−ξt '
1

r
(rξu)r . (A5)

The linear terms on the left-hand side of Eqs. (A1)–(A5)
can be combined to get a linear operator acting onξ alone.
The corresponding right-hand side of the resulting equation
gives the nonlinear terms which non-negligibly perturb the
displacement of moderately large amplitude waves.

To determine the weakly nonlinear evolution equation,
the vertical displacement field is expanded in terms of the
amplitude parameter,α, as follows:

ξ(r,z,t)=αξ0+α2ξ1+ ... (A6)

The vertical structure of the leading order solution,ξ0, is
assumed to be separable from the slowly varying horizontal
space and time dependence in the following way:

ξ0 =

( r0
r

)1/2
A(R,τ)φ(z). (A7)

Here R = ε(r − ct) is the translating radial co-ordinate
which varies slowly as measured byε. For consistency with
the perturbation analysis that follows, the slow time scale is
taken to beτ = εαt . Different from the axisymmetric theory
of Weidman and Velarde(1992), here we have imposed
energy conservation by requiring the magnitude ofξ0 to
decrease asr−1/2 beyond some radiusr0. The vertical
structure function,φ, and the amplitude,A, are both of order
unity.

Inserting Eq. (A6) and corresponding expansions foru,
ρ andp into the governing Eqs. (A1)–(A5) and extracting
leading order terms inα assumingr/r0 is large gives

Lξ0 = 0, (A8)
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where the linear operatorL is defined as

L≡ c2
0∂Rzz+N

2∂R, (A9)

in which N2(z) is the squared buoyancy frequency. Equa-
tions (A8) and (A9) result in the ordinary differential
equation for the vertical structure function

c2
0φ

′′
+N2φ= 0. (A10)

In particular, for the piecewise-linear density profile given
by Eq. (1), φ is given by the long-wave limit of Eq. (7);
the vertical structure is the same whether in a rectilinear or
cylindrical geometry.

At orderα2 and assumingr � r0, the following equation
is satisfied:

Lξ1 =N , (A11)

where the nonlinear operatorN is given in terms of the
leading order functionsA andφ through

N = 2c0φ
′′Aτ +

[
2c2

0(φφ
′)zz+2N2φφ ′′

+(N2)zφ
2

+2c2
0φ

′φ ′′
−c2

0(φφ
′′)z

]( r0
r

)1/2
AAR .

(A12)

Here the primes andz subscripts both denote ordinaryz-
derivatives.

Recognizing Eq. (A9) as a self-adjoint operator inz,
both sides of Eq. (A11) are multiplied byξ0 and the result
is integrated over the domain height (0≤ z ≤ hT ). By
construction, the left-hand side evaluates to zero and so we
arrive at the following equation describing the influence of
nonlinearity upon the amplitudeA at larger:

Aτ +γ
( r0
r

)1/2
AAR = 0. (A13)

Additionally including the effects of linear dispersion intro-
duces the termβARRR on the left-hand side of Eq. (A13). In
the result, bothγ andβ are defined as for rectilinear waves
by Eq. (14). The result can rewritten in terms ofr, t and
a=α

(
r0
r

)1/2
A, as

at +c0

(
ar +

a

2r

)
+γ

(
aar +

a2

2r

)
+βarrr = 0. (A14)

Somewhat surprisingly, with the omission of thea2/2r
term, this result is identical to that ofWeidman and Velarde
(1992). Furthermore, settingφ(z) to be the vertical structure
function of surface waves in a one-layer fluid gives the
formula derived byMiles (1978) for cylindrical solitary
surface waves. However, as was pointed out byWeidman
and Zakhem(1988) for the surface wave equation, the theory
presented here is asymptotically inconsistent. By requiring
r� r0 in order to arrive at the KdV-like equation (A14), the
nonlinear term is no longer necessarily in balance with the
dispersion term.

Acknowledgements.The authors would like to thank the reviewers
whose comments significantly helped improve the presentation of
this work in context with the results of rectilinear intrusions.

Edited by: R. Grimshaw
Reviewed by: two anonymous referees

References

Benjamin, T. B.: Gravity Currents and Related Phenomena, J. Fluid
Mech., 31, 209–248, 1968.

Benney, D. J.: Long Nonlinear Waves in Fluid Flows, J. Math.
Phys., 45, 52–63, 1966.

Bolster, D., Hang, A., and Linden, P. F.: The Front Speed of
Intrusions into a Continuously Stratified Medium, J. Fluid Mech.,
594, 369–377, 2008.

Britter, R. E. and Simpson, J. E.: A Note on the Structure of the
Head of an Intrusive Gravity Current, J. Fluid Mech., 112, 459–
466, 1981.

Brown, D. J. and Christie, D. R.: Fully Nonlinear Solitary Waves in
Continuously Stratified Incompressible Boussinesq Fluids, Phys.
Fluids, 10, 2569–2586, 1998.

Davis, R. E. and Acrivos, A.: Solitary Internal Waves in Deep
Water, J. Fluid Mech., 29, 593–607, 1967.

Derzho, O. G. and Grimshaw, R.: Asymmetric Internal Solitary
Waves with a Trapped Core in Deep Fluids, Phys. Fluids, 19,
096601, doi:10.1063/1.2768507, 2007.

Didden, N. and Maxworthy, T.: The Viscous Spreading of Plane
and Axisymmetric Gravity Currents, J. Fluid Mech., 121, 27–42,
1982.

Dubriel-Jacotin, M. L.: Sur les th̀eoremes d’existence relatifs
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