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Abstract 

Uncertainty in operation and maintenance costs of offshore 

renewable installations can be incurred through failure to 

properly account for marine conditions. One such area, vessel 

utilisation scheduling, requires accurate forecasts of wind and 

wave conditions to minimise charter costs as well as plant 

downtime. Additionally, fuel usage and auxiliary costs will 

increase with longer transfer times. Exploiting auxiliary 

offshore measurement data and its relation to accessibility 

constraints could reduce idle charter periods by allowing 

operatives to better anticipate prevailing site conditions. 

Existing models omit the effect of direction on operations and 

fail to account for the complex relations between dependent 

environmental variables which can impact on operations such 

as crew transfers, lifting and jacking operations. In this paper, 

a methodology for improving the forecasting of offshore 

conditions through incorporating distributed meteorological 

and marine observations at multiple timescales is presented. 

Advancing towards a demonstration of a strategic 

maintenance approach of this kind will assist in both reducing 

direct costs and associated initial project finance. The 

developed model will be beneficial to developers and 

operators as better forecasting of when conditions are suitable 

for maintenance could reduce costs, lost earnings and 

improve mobilisation of vessels and technicians. 

1 Introduction 

Offshore wind is currently generating around 4% of the UK’s 
electricity needs [1] and is expected to provide around 9% 

annually by 2020 [2]. With a further 19.9 GW in construction 

and 5GW in planning [2]. Optimising availability is critical to 

national security of supply. Offshore wind turbine 

availabilities are of the order of 73-83% compared to onshore 

equivalents at 97% [3, 4] incurring lower generation revenues 

from plant with a higher capital outlay. Operation and 

maintenance (O&M) costs are significant accounting for 

around 30% of overall project lifetime costs [5] and of the 

order of £25-40 million for a typical 500MW wind farm [6], 

so pursuing a strategic maintenance approach will both reduce 

direct costs and, through increasing investor confidence, those 

of raising initial projects finance. Reducing the costs of initial 

investment is critical: if initial finance is unavailable at an 

economical rate, then a project cannot proceed since higher 

initial capital costs will increase interest rates, impacting on 

its economic viability. Maximising plant uptime by reducing 

the uncertainties in maintenance scheduling can be addressed 

through anticipating and understanding weather conditions 

better. Monitoring wave height is critical to safe access for 

offshore wind turbines from vessels, so identifying future 

time periods when access vessels cannot operate will reduce 

costs incurred by aborted missions.  Section 2 reviews 

existing literature on forecasting, Section 3-4 introduces the 

data study site off the UK East Anglian coast. Section 5 

outlines the methodology for inter-site forecasting, Section 6 

present results with conclusions in Section 7. 

2 Maintenance and Forecasting 

Predicting the probability of delays to the maintenance of 

offshore wind turbines caused by marine conditions can 

inform access logistics. Possible scenarios are excessive wave 

heights or narrow weather windows incurred by calm periods 

not long enough to perform maintenance [7]. A slight 

improvement in vessel access capabilities can result in 

significant improvement in access and reductions in 

maintenance delays [8]. Table 1 provides example 

transportation access capabilities. 

 

Transportation 

means 

Max wave heights  

(m) 

Max wind speed  

(m/s) 

CTV 

SWATH* 

OAV 

Helicopter 

Jack-up 

Leg-stabilised 

1.5 

1.5-2 

2 

4 

2.8 

0.5 

25 

 

25 

18 

36.1 

  *Small Waterplane Area Twin Hull 

 

Table 1: Generic Maximum operating wave heights and wind 

speeds for a selection of transportation means [9, 10]. 

 

A study cites four key operations and maintenance models, 

some of the models use historical weather data while others 

use synthetically generated weather time series. Use of the 

same historical data for all models produced similar results, 

suggesting that the weather data time series used causes the 

biggest difference between the models [11]. ECN have 

developed a cost and operation and maintenance optimisation 

tool [12]. 
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Reikard and Rogers compare statistical and physical-based 

models concluding that statistical models are more accurate 

for time horizons of less than 6 hours  [13]. Therefore, this 

study will focus on statistical models. Hill et.al. outline a 

methodology for forecasting, up to 6 hours in advance. The 

lack of available offshore observations resulted in the use of 

metrologically, modelled, offshore weather data [14]. The 

paper uses actual data rather than synthesised observations 

[14-16]. 

 

Andreas and Wang analysed hourly wave height and wind 

speed data from 12 buoys off the North East coast of the USA 

over an 18 year period. The study requiring only water depth 

and wind speed finds a strong relation between wind speeds 

and wave heights with a stronger correlation at lower wave 

heights and wind speeds [17]. Espejo identifies a relationship 

between directions of wind speeds and wave heights [18]. 

Direction and speed can be multi-modal and there may be 

coupling between speed and direction. The speed or 

directional regimes associated with such modes indicates if it 

is multimodal. The analysis study splits prevailing site 

conditions into a number of regimens. The study concludes 

that the use of mixture models has the advantage over the use 

of Weibull distributions in that multimodal studies can be 

performed [19]. 

 

Gneiting et.al researches probabilistic forecasts of continuous 

variables; the study compares three forecasting methods; 

persistence, autoregressive and regime-switching space–time 

(RST), see section 4.5. The papers key recommendation is to 

improve sharpness; that is the concentration of the predicted 

variables. The study uses a case study of wind speeds at the 

Stateline wind energy centre in the US Pacific Northwest 

[20]. 

 

Stelle et.al provides details of wave buoy measurement for 

pitch and roll buoys [21]. Buoy pitch and roll are computed 

using angular sensors [22], see section 3.1. Distributions of 

directional wind speeds can be characterised using finite 

mixture models of continuous variable probability. Carta et.al 

uses a finite mixture of von Mises distributions. The research 

splits wind speed into cartesian components. The study 

concludes that mixture distributions provide a very flexible 

model for wind direction studies and can be used where there 

are several modes of prevailing wind direction [23]. This 

provides an analysis relevant to this research. However, the 

case study is in a different climatic region.  

 

In this study, statistical models are used for forecasting less 

than 6 hours in advance [13]. Literature has informed key 

constraints on access and the selection of the constraint 

parameter for this study of 1.5m wave heights for crew 

transfer [9]. Therefore, methods of forecasting when wave 

heights are below this threshold is investigated. The following 

section introduces a case study location off the UK East 

Anglian coast and relevant wave and wind speed data in this 

region. 

 

3 Case Study 

East Anglia One, a third development round offshore wind 

farm has 102 turbines rated at 7MW with a water depth of 30 

- 42 m. Figure 1, shows the 297 km2 area of the site which has 

a distance of 53.8 km from the shore at the centre [24]. A case 

study of East Anglia One Wind Farm allows modelling close 

to an actual site. The case study gives a real-world context 

and provides the potential to obtain data from developers to 

validate findings at a future date. This study addresses the 

development of a model that relates wind speeds with wave 

height for the selected offshore site.  The closest CEFAS 

(Centre for Environment, Fisheries and Aquaculture Science) 

wave date sites are Southwold Approach (Southwold) and 

West Gabbard (Gabbard) as shown Figure 1 [25]. Table 2 

provides the range of dates for which wave data is available 

for the case study site. This study uses data from the third 

quarter of 2012 to late 2015 to provide a fair comparison. 

Wind data for Gabbard is for the year of 2012 only. 

 

 
 

Figure 1: Case study site near East Anglia One Wind Farm 

 

Location Start Date End Date 

Happisburgh 

Southwold 

Gabbard 

Felixstowe 

South Knock 

04/09/12 

01/04/10 

28/08/02 

04/09/12 

01/04/10 

11/03/16 

11/03/16 

11/03/16 

15/12/15 

11/03/16 

 

Table 2: Timescales for CEFAS data. 

3.1 Data Sources 

Waves are formed by the orbital motion of water which can 

be represented by frequency, amplitude, and direction. The 

buoy follows the orbital motion of the water as the mass of 

the buoy equals the of the mass of the displaced water 

volume. Measurement of the vertical motion of the buoy 

gives the wave height. For waves smaller than the buoy’s 
circumference the motion is not followed anymore. The 

buoy’s mooring will hinder the motion of the buoy. The mass 

spring resonant frequency is: 

f0 = (2ʌ)-1 (C/m)1/2.  (1) 
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where C, in Equation (1), is the spring constant of the rubber 

cord in the horizontal direction and m is the added mass of the 

buoy. The buoy rides waves perfectly for wave frequencies 

greater than f0. For frequencies lower than f0 the buoy’s 
horizontal motion is limited [26]. It is assumed that this is the 

cause of the minimum threshold for wave heights of about 0.1 

m, see Table 3. Significant wave height is the highest one-

third of waves. 

 

 Min wave height recorded 

(m) 

Depth 

(m) 

Happisburgh 

Southwold 

Gabbard 

Felixstowe 

South Knock 

0.09 

0.11 

0.13 

0.08 

0.11 

10 

23 

34 

8 

26 

 

Table 3: Minimum wave heights and water depth [25]. 

 

Directional buoys measure wave direction using the 

correlation between the buoys tilt angles and the heave 

motion. Pitch and roll determine the tilt angle. Morring lines 

can cause the direction of the buoys movement to differ from 

that of the waves [21, 26]. 

 

4 Methodology 

Three forecasting methodologies are used in this study the 

first is a persistent forecast, the second and third use joint 

distribution to form a conditional forecast from observed data.  

4.1 Forecast Method 1 (F1): Persistence forecast 

The persistence forecast assumes conditions in three hours 

time will be the same as they are at the time of the forecast. 

4.2 Forecast Method 2 (F2) Conditional Gaussian forecast 

 
 

Figure 2: Log-transformed Felixstowe data demonstrating 

marginal Gaussian distribution characteristics. 

 

 

A simple spatial correlation between two sites is performed 

for example wave heights at Felixstowe are used to predict 

wave heights at Gabbard, all forecast were for Gabbard as this 

is the closest of the sites to East Anglia One wind farm. 

Figure 2 shows the data transformed into a form more suited 

to use in a simple model. Log transformation of the wave data 

allows it to be treated as a Gaussian distributed variable, see 

Figure 2. The model learns the joint Gaussian distribution of 

the two variables and then uses the parameters to calculate the 

conditional form. The resulting conditional mean is used to 

produce the forecast.  

4.3 Forecast Method 3 (F3): Gabbard wind-wave forecast 

This method uses wind speeds at Gabbard to forecast wave 

heights at Gabbard. The method is the same as forecast 

method two except the natural logarithm of the data is not 

taken. 

4.4 Vessel Model 

A crew transfer vessel model has been developed based on 

the constraint of a maximum 1.5 m wave height for crew 

transfers [9]. The model assumes that the vessel sails if the 

wave height is less than or equal to 1.5 m. For wave heights 

greater than 1.5 m the vessel does not sail. This model is run 

for all three forecasts and the actual data. After running this 

model, these four cases show the accuracy of the forecasts: 

A. True positive (TP): the forecast correctly predicted that 

conditions were suitable. 

B. True negative (TN): the forecast correctly predicted that 

conditions were not suitable. 

C. False positive (FP):  the forecast incorrectly predicted that 

conditions were suitable. 

D. False negative (FN): the model predicted that conditions 

were not suitable when they actually were. 

4.5 Predictor accuracy measures 

Predictor accuracy is measured using sensitivity, specificity, 

Positive Predicted Value (PPV) and prevalence these are 

calculated using Equations (2-5) [27, 28]. Sensitivity is the 

number of true positives as a percentage of the actual total 

number of positive outcomes, see Equation (2). Sensitivity 

would be important for determining the probability that 

opportunities to do maintenance on the turbine are exploited.  

Sensitivity = (TP)/(TP + FN).  (2) 

 

Specificity is the proportion of times when the vessel cannot 

sail, who are correctly labelled negatively by the model, see 

Equation (3). Specificity would be useful for determining 

how likely that having got the vessel to the turbine a crew 

transfer can be performed. This would be especially important 

if crew and vessel charter are the most critical economic 

factors or safety considerations.  

Specificity =(TN)/(TN + FP).  (3) 

 

Positive predictive value (PPV) is the probability that given a 

positive result from the forecast the vessel can sail, see 

Equation (4). PPV provides a metric of confidence in the 
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forecast; it could be useful for deciding whether to make 

decisions based on the forecast.  

PPV = (TP)/(TP + FP).  (4) 

 

Prevalence will be the same for all forecasts for the same site 

regardless of the forecasting method, for the persistence 

forecasts it provides a comparison of the forecasts for the 

different locations. For the forecasts for Gabbard, it provides 

an additional check of the forecast results accuracy. 

Prevalence can be calculated from Equation (5) or directly 

from the data. 

Prevalence = (TP + FN)/(Total Population). (5) 

5 Results 

 
 

Figure 3 Persistence forecasts accuracy for sailing decisions 

at four sites near East Anglia One. 

 

Each of the forecast methodologies is used with the vessel 

model and the prediction accuracy measures. The higher 

occurring true positive and true negative sectors dominate the 

pie charts of Figure 3, the more interesting false positive and 

false negative sectors are tiny making the pie charts of limited 

use for presenting results. Therefore, accuracy measures in 

section 4.5 have been used for further analysis see Figure 4, 

Figure 5 and Figure 6. 

5.1 Forecast Method 1 (F1): Persistence forecast 

Figure 3 suggests a relatively high accuracy of the models. 

However, the limited number of wave heights over 1.5 m 

means that there is a naturally greater chance of wave heights 

being below 1.5 m, this applies particularly to the nearer 

shore sites of Happisburgh and Felixstowe. False positive and 

false negatives are equally likely for the persistence forecasts 

for all locations, due to the phase shifted nature of the forecast 

effectively resulting in each wave height being moved three 

hours into the future. 

 

Figure 4 shows that all sites have a probability of 95% or 

above of correctly predicting that conditions are suitable to 

sail (see sensitivity). Gabbard has the highest rate of 

specificity that is that is Gabbard has the highest accuracy of 

correctly predicting when wave heights are above 1.5m. 

Felixstowe has the highest rate of PPV while Gabbard has the 

lowest. Some of the nearer shore sites such as Felixstowe 

have greater accuracy measure results possibly due to the 

significantly higher number of actual times when conditions 

are suitable to sail as shown by the prevalence. However, 

Gabbard is the most relevant to decisions as to whether 

conditions are appropriate for crew transfers to the turbine. 

South Knock (Knock) results are also relevant to crew 

transfer decisions as this is also a deeper water site, see Table 

3 for a list of the water depths at the sites. The results for the 

near shore sites are still relevant as the vessel needs to be able 

to get personal safely from the harbourside to the turbine, see 

Table 4 for distance to shore. 

 

 
 

Figure 4 Comparison of accuracy measures for persistence 

forecasts. 

 

5.2 Forecast Method 2 (F2) Conditional Gaussian forecast 

Figure 5 shows a comparison of spatial models using wave 

heights at four sites to forecast those at Gabbard. Southwold 

and Felixstowe, the two closest sites to Gabbard, perform best 

in the conditional Gaussian forecast (F2 see section 4.2). For 

specificity and PPV this forecast is less accurate that the 

persistence forecast for Gabbard. Maximising specificity 

would be most important if crew and vessel charter is the 

deciding economic or safety factor so that the occurrences of 

the vessel sailing when conditions are unsuitable are 

minimised. PPV would be the most important factor with 

regards to deciding whether to use the forecast. Higher PPV 

shows greater confidence in the forecast. Knock and 

Southwold have a minimally higher sensitivity to the 

persistence forecast therefore on this factor alone forecast 

method two would be preferable however the decrease in the 

accuracy for the specificity and PPV metrics outweighs this 

marginal benefit. 

 

For the conditional Gaussian forecast (F2) Knock and 

Southwold consistently perform the best these are the deeper 

water sites with water depths of ¾ and Ҁ of the 34 m water 
depth at Gabbard it is assumed that this is the cause of the 

higher forecast accuracy. Happisburgh and Felixstowe are 

less accurate for all the metrics than the persistence forecast 

probably due to water depths of 10 m or less at these sites 
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(see Table 3 for water depths).  Overall, the persistence 

forecast (F1) for Gabbard showed higher accuracy than the F2 

method. Prevalence is always 80% for Gabbard as the actual 

number of occurrences, when conditions are suitable to sail, is 

the same. Comparable water depth was found to be the most 

important factor in this study for determining forecast 

accuracy and was found to be more important than spatial 

distance or direction (see Table 4). 

 

 
 

Figure 5 Comparison of accuracy measures for conditional 

Gaussian forecast for Gabbard wave heights (F2), dashed box, 

is Gabbard persistence forecast (F1).  

 

From West  

Gabbard: 

Distance 

(km) 

Direction 

(Deg) 

Offshore 

(km) 

Happisburgh 

Felixstowe 

Southwold 

Gabbard 

Knock 

101 

47 

42 

N/A 

56 

339 

226 

331 

N/A 

218 

0 

4 

7 

36 

37 

 

Table 4 Distance and direction of sites from Gabbard and 

distance from each site to shoreline. 

5.3 Forecast Method 3 (F3): Gabbard wind-wave forecast 

The third study is conducted for the year of 2012 as Gabbard 

wind speed data is for this year only. Figure 6 shows predictor 

accuracy measures for a forecast for wave heights at Gabbard 

based on wind speeds at the same site; this is labelled F3 (see 

section 4.3). For comparison purposes, the persistence 

forecast for Gabbard (F1) and the spatial wave forecasts (F2) 

are shown. Figure 6 indicates that the forecast of wave height 

using Gabbard wind speed (F3) is most accurate for 

sensitivity. Therefore, if doing maintenance or turbine 

inspections as soon as possible is the priority, then this 

forecast may be chosen. However, this forecast is less 

accurate for specificity and PPV. As specificity is 56% for 

forecast 3 (F3), if confidence in being able to do the crew 

transfer on reaching the turbine is the priority then this 

forecast would not be used. The proportion of positive 

predicted values (PPV) is slightly lower for F3. Therefore, 

there is slightly less confidence in this forecast. The use of the 

F3 forecasting methodology with a truncated Gaussian 

distribution was investigated and was found to provide similar 

results. The highest wave height recorded at Gabbard in the 

study period was 5.1 m. A study of data for four days either 

side of this outlier wave height found similar results as to 

Figure 6 but with a more pronounced trend. For these outlier 

wave heights, sensitivity was 100% for the Knock F2 forecast 

and 50% of the Gabbard F1 persistence forecast. For 

specificity, the Gabbard persistence forecast again performed 

best, but the Knock F2 forecast was a closer second. 

 

 
Figure 6 Comparison of forecasting methods for 2012 data.  

 

6 Conclusions 

The study has presented a persistent forecast and a simple 

forecasting model based on a Gaussian distribution. In this 

study, the persistence forecast showed a higher level of 

accuracy than a simple forecasting model based on a 

Gaussian distribution. However these results are for a 

persistence forecast for three hours in advance, for longer 

horizons the results may be different. The natural logarithm of 

wave data was taken to allow more accurate forecasting based 

on a Gaussian distribution. The study found that water depth 

was the most important factor in determining which site was 

most useful for forecasting wave heights at Gabbard and this 

was more important than spatial distance or direction. 

Investigating the impact of exceptional wave heights has 

demonstrated that the model provides similar more 

pronounced results in these cases. Figure 2 shows that the two 

natural logarithms of Felixstowe and Gabbard wave heights 

follow a Gaussian distribution. The scatter graphs indicate an 

upper tail dependency. However, the lower tails are more 

independent; showing a potential limitation of the forecast 

that while individual variables may be Gaussian distributed 

this does not automatically mean that they have a joint 

Gaussian distribution. Future work could look at the accuracy 

of persistence forecasts four or five hours in advance and the 

development of other more refined forecasting 

methodologies.  Future work could examine the use of 

copulas to describe the dependence between two variables 

and study ways to characterise the directional dependencies 

between multiple sites. 
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