216 research outputs found

    Assessing the volcanic hazard for Rome. 40Ar/39Ar and In-SAR constraints on the most recent eruptive activity and present-day uplift at Colli Albani Volcanic District

    Get PDF
    We present new 40Ar/39Ar data which allow us to refine the recurrence time for the most recent eruptive activity occurred at Colli Albani Volcanic District (CAVD) and constrain its geographic area. Time elapsed since the last eruption (36 kyr) overruns the recurrence time (31 kyr) in the last 100 kyr. New interferometric synthetic aperture radar data, covering the years 1993–2010, reveal ongoing inflation with maximum uplift rates (>2 mm/yr) in the area hosting the most recent (<200 ka) vents, suggesting that the observed uplift might be caused by magma injection within the youngest plumbing system. Finally, we frame the present deformation within the structural pattern of the area of Rome, characterized by 50 m of regional uplift since 200 ka and by geologic evidence for a recent (<2000 years) switch of the local stress-field, highlighting that the precursors of a new phase of volcanic activity are likely occurring at the CAVD

    Optimizing Medication Appropriateness in Older Adults: A Randomized Clinical Interventional Trial to Decrease Anticholinergic Burden

    Get PDF
    Background The complexity of medication therapy in older adults with multiple comorbidities often leads to inappropriate prescribing. Drugs with anticholinergic properties are of particular interest because many are not recognized for this property; their use may lead to increased anticholinergic burden resulting in significant health risks, as well as negatively impacting cognition. Medication therapy management (MTM) interventions showed promise in addressing inappropriate medication use, but the effectiveness of targeted multidisciplinary team interventions addressing anticholinergic medications in older populations is yet to be determined. Methods We conducted an 8-week, parallel-arm, randomized trial to evaluate whether a targeted patient-centered pharmacist–physician team MTM intervention (“targeted MTM intervention”) reduced the use of inappropriate anticholinergic medications in older patients enrolled in a longitudinal cohort at University of Kentucky’s Alzheimer’s Disease Center. Study outcomes included changes in the medication appropriateness index (MAI) targeting anticholinergic medications and in the anticholinergic drug scale (ADS) score from baseline to the end of study. Results Between October 1, 2014 and September 30, 2015 we enrolled and randomized 50 participants taking at least one medication with anticholinergic properties. Of these, 35 (70%) were women, 45 (90%) were white, and 33 (66%) were cognitively intact (clinical dementia rating [CDR] = 0); mean age was 77.7 ± 6.6 years. At baseline, the mean MAI was 12.6 ± 6.3; 25 (50%) of the participants used two or more anticholinergics, and the mean ADS score was 2.8 ± 1.6. After randomization, although no statistically significant difference was noted between groups, we identified a potentially meaningful imbalance as the intervention group had more participants with intact cognition, and thus included CDR in all of the analyses. The targeted MTM intervention resulted in statistically significant CDR adjusted differences between groups with regard to improved MAI (change score of 3.6 (1.1) for the MTM group as compared with 1.0 (0.9) for the control group, p = 0.04) and ADS (change score of 1.0 (0.3) for the MTM group as compared with 0.2 (0.3) for the control group, p = 0.03). Conclusions Our targeted MTM intervention resulted in improvement in anticholinergic medication appropriateness and reduced the use of inappropriate anticholinergic medications in older patients. Our results show promise in an area of great importance to ensure optimum outcomes for medications used in older adults. Trial registration ClinicalTrials.gov NCT02172612. Registered 20 June 2014

    Geochronology, geochemistry and geodynamics of the Cabo de Gata volcanic zone, Southeastern Spain

    Get PDF
    © 2014 Societa Geologica Italiana, Roma. New 40Ar/39Ar ages and major and trace element geochemistry of the middle-late Miocene Cabo de Gata volcanic complex, southeast Spain, indicate that the volcanic activity of the Cabo de Gata volcanic zone developed over a short period through several pulses of geochemically and isotopically different parental magmas. The oldest volcanic rocks exposed in the Cabo de Gata volcanic zone are the shoshonite and high-K calc-Alkaline rocks of Bujo group, which cry - stallised from a parental magma transitional from calc-Alkaline to alkaline potassic generated through large degrees of partial melting, and then affected by a minor contribution from metasomatised veins and a larger one from the surrounding mantle wedge, in comparison to ultrapotassic melts. Subsequent partial melting of the mantle source produced typical calc-Alkaline parental magmas belonging to the Rodalquilar and Agua Amarga groups. Sr-Nd-Pb isotope and incompatible trace element distributions of Cabo de Gata rocks are in agreement with a mantle-wedge source affected by a two-fold metasomatism. The data suggested that mild potassic to sub-Alkaline subduction-related parental magmas (i.e., high-K calc-Alkaline and calc-Alkaline) were generated in the Cabo de Gata sector within a mantle wedge metasomatised by a fluid-dominated agent. In contrast, the enrichment in K2O of shoshonitic to ultrapotassic magmas was achieved through recycling of subducted sediments through melts that enriched the mantle wedge in K and related elements. Such a scenario can be easily reconciled with a geodynamic setting at the edge of a destructive plate margin with the subducted slab responsible for the recycling of sediments within the mantle wedge.Geochemical, petrographic and analytical work were supported by the Italian MIUR through Cofin_2004 (grants #2004040502_001 and 2004040502_002), Cofin_2008 (grants #2008HMHYFP_002 and 2008HMHYFP_004) and Cofin_2010-2011 (grants #2010TT22SC_001, 2010TT22SC_005 and 2010TT22SC_006; 2010TT22SC_003) projects, to Sandro Conticelli and Massimo Mattei, respectively. Further financial support for geochronological analyses was provided by Spanish projects CGL2009-06968-E, CGL2005-03511/BTE and HI2006-0073 to Carles C. Soriano.Peer Reviewe

    White Matter Hyperintensity Regression: Comparison of Brain Atrophy and Cognitive Profiles with Progression and Stable Groups

    Get PDF
    Subcortical white matter hyperintensities (WMHs) in the aging population frequently represent vascular injury that may lead to cognitive impairment. WMH progression is well described, but the factors underlying WMH regression remain poorly understood. A sample of 351 participants from the Alzheimer’s Disease Neuroimaging Initiative 2 (ADNI2) was explored who had WMH volumetric quantification, structural brain measures, and cognitive measures (memory and executive function) at baseline and after approximately 2 years. Selected participants were categorized into three groups based on WMH change over time, including those that demonstrated regression (n = 96; 25.5%), stability (n = 72; 19.1%), and progression (n = 209; 55.4%). There were no significant differences in age, education, sex, or cognitive status between groups. Analysis of variance demonstrated significant differences in atrophy between the progression and both regression (p = 0.004) and stable groups (p = 0.012). Memory assessments improved over time in the regression and stable groups but declined in the progression group (p = 0.003; p = 0.018). WMH regression is associated with decreased brain atrophy and improvement in memory performance over two years compared to those with WMH progression, in whom memory and brain atrophy worsened. These data suggest that WMHs are dynamic and associated with changes in atrophy and cognition

    The Volsci Volcanic Field (central Italy). Eruptive history, magma system and implications on continental subduction processes.

    Get PDF
    Here, we report on the Quaternary Volsci Volcanic Field (VVF, central Italy). In light of new 40Ar/39Ar geochronological data and compositional characterization of juvenile eruptive products, we refine the history of VVF activity, and outline the implications on the pre-eruptive magma system and the continental subduction processes involved. Different from the nearby volcanic districts of the Roman and Campanian Provinces, the VVF was characterized by small-volume (0.01–0.1 km3) eruptions from a network of monogenetic centers (mostly tuff rings and scoria cones, with subordinate lava occurrences), clustered along high-angle faults of lithospheric depth. Leucite-bearing, high-K (HKS) magmas (for which we report for the first time the phlogopite phenocryst compositions) mostly fed the early phase of activity (∼761–539 ka), then primitive, plagioclase-bearing (KS) magmas appeared during the climactic phase (∼424–349 ka), partially overlapping with HKS ones, and then prevailed during the late phase of activity (∼300–231 ka). The fast ascent of primitive magma batches is typical of a tectonically controlled volcanic field, where the very low magma flux is a passive byproduct of regional tectonic strain. We suggest that the dominant compressive stress field acting at depth was accompanied by an extensional regime in the upper crust, associated with the gravity spreading of the Apennine chain, allowing the fast ascent of magma from the mantle source with limited stationing in shallow reservoirs

    Distinct White Matter Changes Associated with Cerebrospinal Fluid Amyloid-β\u3csub\u3e1-42\u3c/sub\u3e and Hypertension

    Get PDF
    BACKGROUND: Alzheimer\u27s disease (AD) pathology and hypertension (HTN) are risk factors for development of white matter (WM) alterations and might be independently associated with these alterations in older adults. OBJECTIVE: To evaluate the independent and synergistic effects of HTN and AD pathology on WM alterations. METHODS: Clinical measures of cerebrovascular disease risk were collected from 62 participants in University of Kentucky Alzheimer\u27s Disease Center studies who also had cerebrospinal fluid (CSF) sampling and MRI brain scans. CSF Aβ1-42 levels were measured as a marker of AD, and fluid-attenuated inversion recovery imaging and diffusion tensor imaging were obtained to assess WM macro- and microstructural properties. Linear regression analyses were used to assess the relationships among WM alterations, cerebrovascular disease risk, and AD pathology. Voxelwise analyses were performed to examine spatial patterns of WM alteration associated with each pathology. RESULTS: HTN and CSF Aβ1-42 levels were each associated with white matter hyperintensities (WMH). Also, CSF Aβ1-42 levels were associated with alterations in normal appearing white matter fractional anisotropy (NAWM-FA), whereas HTN was marginally associated with alterations in NAWM-FA. Linear regression analyses demonstrated significant main effects of HTN and CSF Aβ1-42 on WMH volume, but no significant HTN×CSF Aβ1-42 interaction. Furthermore, voxelwise analyses showed unique patterns of WM alteration associated with hypertension and CSF Aβ1-42. CONCLUSION: Associations of HTN and lower CSF Aβ1-42 with WM alteration were statistically and spatially distinct, suggesting independent rather than synergistic effects. Considering such spatial distributions may improve diagnostic accuracy to address each underlying pathology

    Propofol Directly Increases Tau Phosphorylation

    Get PDF
    In Alzheimer's disease (AD) and other tauopathies, the microtubule-associated protein tau can undergo aberrant hyperphosphorylation potentially leading to the development of neurofibrillary pathology. Anesthetics have been previously shown to induce tau hyperphosphorylation through a mechanism involving hypothermia-induced inhibition of protein phosphatase 2A (PP2A) activity. However, the effects of propofol, a common clinically used intravenous anesthetic, on tau phosphorylation under normothermic conditions are unknown. We investigated the effects of a general anesthetic dose of propofol on levels of phosphorylated tau in the mouse hippocampus and cortex under normothermic conditions. Thirty min following the administration of propofol 250 mg/kg i.p., significant increases in tau phosphorylation were observed at the AT8, CP13, and PHF-1 phosphoepitopes in the hippocampus, as well as at AT8, PHF-1, MC6, pS262, and pS422 epitopes in the cortex. However, we did not detect somatodendritic relocalization of tau. In both brain regions, tau hyperphosphorylation persisted at the AT8 epitope 2 h following propofol, although the sedative effects of the drug were no longer evident at this time point. By 6 h following propofol, levels of phosphorylated tau at AT8 returned to control levels. An initial decrease in the activity and expression of PP2A were observed, suggesting that PP2A inhibition is at least partly responsible for the hyperphosphorylation of tau at multiple sites following 30 min of propofol exposure. We also examined tau phosphorylation in SH-SY5Y cells transfected to overexpress human tau. A 1 h exposure to a clinically relevant concentration of propofol in vitro was also associated with tau hyperphosphorylation. These findings suggest that propofol increases tau phosphorylation both in vivo and in vitro under normothermic conditions, and further studies are warranted to determine the impact of this anesthetic on the acceleration of neurofibrillary pathology

    Deformation-related volcanism in the Pacific Ocean linked to the Hawaiian-Emperor bend

    Get PDF
    Ocean islands, seamounts and volcanic ridges are thought to form above mantle plumes. Yet, this mechanism cannot explain many volcanic features on the Pacific Ocean floor and some might instead be caused by cracks in the oceanic crust linked to the reorganization of plate motions. A distinctive bend in the Hawaiian–Emperor volcanic chain has been linked to changes in the direction of motion of the Pacific Plate, movement of the Hawaiian plume, or a combination of both. However, these links are uncertain because there is no independent record that precisely dates tectonic events that affected the Pacific Plate. Here we analyse the geochemical characteristics of lava samples collected from the Musicians Ridges, lines of volcanic seamounts formed close to the Hawaiian–Emperor bend. We find that the geochemical signature of these lavas is unlike typical ocean island basalts and instead resembles mid-ocean ridge basalts. We infer that the seamounts are unrelated to mantle plume activity and instead formed in an extensional setting, due to deformation of the Pacific Plate. 40Ar/39Ar dating reveals that the Musicians Ridges formed during two time windows that bracket the time of formation of the Hawaiian–Emperor bend, 53–52 and 48–47 million years ago. We conclude that the Hawaiian–Emperor bend was formed by plate–mantle reorganization, potentially triggered by a series of subduction events at the Pacific Plate margins
    corecore