159 research outputs found

    Sparse precision matrix estimation in phenotypic trait evolution models

    Full text link
    Phylogenetic trait evolution models allow for the estimation of evolutionary correlations between a set of traits observed in a sample of related organisms. By directly modeling the evolution of the traits along an estimable phylogenetic tree, the model's structure effectively controls for shared evolutionary history. In these models, relevant correlations are usually assessed through the high posterior density interval of their marginal distributions. However, the selected correlations alone may not provide the full picture regarding trait relationships. Their association structure, expressed through a graph that encodes partial correlations, can in contrast highlight sparsity patterns featuring direct associations between traits. In order to develop a model-based method to identify this association structure we explore the use of Gaussian graphical models (GGM) for covariance selection. We model the precision matrix with a G-Wishart conjugate prior, which results in sparse precision estimates. Furthermore the model naturally allows for Bayes Factor tests of association between the traits, with no additional computation required. We evaluate our approach through Monte Carlo simulations and applications that examine the association structure and evolutionary correlations of phenotypic traits in Darwin's finches and genomic and phenotypic traits in prokaryotes. Our approach provides accurate graph estimates and lower errors for the precision and correlation parameter estimates, particularly for conditionally independent traits, which are the target for sparsity in GGMs.Comment: 24 pages, 4 figure

    Identfication and quantfication of giant bioaerosol particles over the Amazon rainforest

    Get PDF
    Eukarya dominate the coarse primary biological aerosol (PBA) above the Amazon rainforest canopy, but their vertical profile and seasonality is currently unknown. In this study, the stratification of coarse and giant PBA >5 ”m were analyzed from the canopy to 300 m height at the Amazon Tall Tower Observatory in Brazil during the wet and dry seasons. We show that >2/3 of the coarse PBA were canopy debris, fungal spores commonly found on decaying matter were second most abundant (ranging from 15 to 41%), followed by pollens (up to 5%). The atmospheric roughness layer right above the canopy had the greatest giant PBA abundance. Measurements over 5 years showed an increased abundance of PBA during a low-rainfall period. Giant particles, such as pollen, are reduced at 300 m, suggesting their limited dispersal. These results give insights into the giant PBA emissions of this tropical rainforest, and present a major step in understanding the type of emitted particles and their vertical distribution

    Treatment with the immunomodulator FTY720 does not promote spontaneous bacterial infections after experimental stroke in mice

    Get PDF
    Background: FTY720, an immunomodulator derived from a fungal metabolite which reduces circulating lymphocyte counts by increasing the homing of lymphocytes to the lymph nodes has recently gained interest in stroke research. The aim of this study was to evaluate the protective efficacy of FTY720 in cerebral ischemia in two different application paradigms and to gather first data on the effect of FTY720 on the rate of spontaneous bacterial infections in experimental stroke. Methods: Middle cerebral artery occlusion (MCAO) in C57BL/6 mice (strain J, groups of 10 animals) was performed with two different durations of ischemia (90 min and 3 h) and FTY720 was applied 2 h after vessel occlusion to study the impact of reperfusion on the protective potency of FTY720. Lesion size was determined by TTC staining. Mice treated with FTY720 or vehicle were sacrificed 48 h after 90 min MCAO to determine the bacterial burden in lung and blood. Results: FTY720 1 mg/kg significantly reduced ischemic lesion size when administered 2 h after the onset of MCAO for 3 h (45.4 +/- 22.7 mm3 vs. 84.7 +/- 23.6 mm3 in control mice, p = 0.001) and also when administered after reperfusion, 2 h after the onset of MCAO for 90 min (31.1 +/- 28.49 mm3 vs. 69.6 +/- 27.2 mm3 in control mice, p = 0.013). Bacterial burden of lung homogenates 48 h after stroke did not increase in the group treated with the immunomodulator FTY720 while there was no spontaneous bacteremia 48 h after MCAO in treated and untreated animals. Conclusions: Our results corroborate the experimental evidence of the protective effect of FTY720 seen in different rodent stroke models. Interestingly, we found no increase in bacterial lung infections even though FTY720 strongly reduces the number of circulating leukocytes

    Adsorption-Induced Deformation in Nanopores: Unexpected Results Obtained by Molecular Simulations

    Get PDF
    International audienceThe adsorption of a fluid in a nanoporous material induces deformations of the solid. The saturating regime, where the solid is filled with liquid, generally exhibits a linear relationship between the liquid pressure and the solid strain. This provides an experimental way to measure the elastic moduli of the solid walls. For large pores, the strain is determined by the pressure of the liquid saturating the pores and the mechanical properties of the porous solid. What happens at the nanometric scale, where liquid/matrix interfacial effects dominate? We have performed molecular simulations of a simple Lennard-Jones fluid confined between deformable nanoplatelets. The simulations provide the deformation of the nanopore as a function of the liquid pressure, in a way similar to what is done experimentally. The results show unexpected interface effects, which could be relevant to experimental data analysis

    Association of severe hypertension with pneumonia in elderly patients with acute ischemic stroke

    Get PDF
    Pneumonia is one of the most frequent complications in elderly patients with acute ischemic stroke. Although severe hypertension is often observed in the early phase of acute stroke, there are few studies of acute hypertension as a factor influencing the incidence of stroke-associated pneumonia (SAP) in elderly subjects with acute ischemic stroke. To assess the association of acute phase blood-pressure elevation with the incidence of SAP, we compared 10 elderly patients with acute ischemic stroke complicated with severe hypertension (â©Ÿ200/120 mm Hg) with 43 patients with moderate hypertension (160–199/100–119 mm Hg), as well as with 65 control normotensive or mildly hypertensive (<160/100 mm Hg) controls on admission. Data were collected on known risk factors, type of ischemic stroke and underlying chronic conditions. The significance of differences in risk factors was analyzed using univariate and multivariate comparisons of 38 SAP cases and others, 8 SAP death cases and others, and 28 patients with poor outcome associated with in-hospital death or artificial feeding at discharge and others. After adjustment for potential confounding factors, the relative risk estimates for SAP, SAP death and poor outcome were 2.83 (95% confidence interval 1.14–7.05), 5.20 (1.01–26.8) and 6.84 (1.32–35.4), respectively, for severe hypertension relative to normotensive or mildly hypertensive controls. We conclude that severe hypertension on admission is an independent predictive factor for SAP in elderly patients with acute ischemic stroke

    A New Microsphere-Based Immunoassay for Measuring the Activity of Transcription Factors

    Get PDF
    There are several traditional and well-developed methods for analyzing the activity of transcription factors, such as EMSA, enzyme-linked immunosorbent assay, and reporter gene activity assays. All of these methods have their own distinct disadvantages, but none can analyze the changes in transcription factors in the few cells that are cultured in the wells of 96-well titer plates. Thus, a new microsphere-based immunoassay to measure the activity of transcription factors (MIA-TF) was developed. In MIA-TF, NeutrAvidin-labeled microspheres were used as the solid phase to capture biotin-labeled double-strand DNA fragments which contain certain transcription factor binding elements. The activity of transcription factors was detected by immunoassay using a transcription factor-specific antibody to monitor the binding with the DNA probe. Next, analysis was performed by flow cytometry. The targets hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-kappa B (NF-ÎșB) were applied and detected in this MIA-TF method; the results that we obtained demonstrated that this method could be used to monitor the changes of NF-ÎșB or HIF within 50 or 100 ng of nuclear extract. Furthermore, MIA-TF could detect the changes in NF-ÎșB or HIF in cells that were cultured in wells of a 96-well plate without purification of the nuclear protein, an important consideration for applying this method to high-throughput assays in the future. The development of MIA-TF would support further progress in clinical analysis and drug screening systems. Overall, MIA-TF is a method with high potential to detect the activity of transcription factors

    Differential Effects of HIF-1 Inhibition by YC-1 on the Overall Outcome and Blood-Brain Barrier Damage in a Rat Model of Ischemic Stroke

    Get PDF
    Hypoxia-inducible factor 1 (HIF-1) is a master regulator of cellular adaptation to hypoxia and has been suggested as a potent therapeutic target in cerebral ischemia. Here we show in an ischemic stroke model of rats that inhibiting HIF-1 and its downstream genes by 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) significantly increases mortality and enlarges infarct volume evaluated by MRI and histological staining. Interestingly, the HIF-1 inhibition remarkably ameliorates ischemia-induced blood-brain barrier (BBB) disruption determined by Evans blue leakage although it does not affect brain edema. The result demonstrates that HIF-1 inhibition has differential effects on ischemic outcomes and BBB permeability. It indicates that HIF-1 may have different functions in different brain cells. Further analyses show that ischemia upregulates HIF-1 and its downstream genes erythropoietin (EPO), vascular endothelial growth factor (VEGF), and glucose transporter (Glut) in neurons and brain endothelial cells and that YC-1 inhibits their expression. We postulate that HIF-1-induced VEGF increases BBB permeability while certain other proteins coded by HIF-1's downstream genes such as epo and glut provide neuroprotection in an ischemic brain. The results indicate that YC-1 lacks the potential as a cerebral ischemic treatment although it confers certain protection to the cerebral vascular system
    • 

    corecore