401 research outputs found
Recommended from our members
Systematic Multi-Domain Alzheimer's Risk Reduction Trial (SMARRT): Study Protocol.
This article describes the protocol for the Systematic Multi-domain Alzheimer's Risk Reduction Trial (SMARRT), a single-blind randomized pilot trial to test a personalized, pragmatic, multi-domain Alzheimer's disease (AD) risk reduction intervention in a US integrated healthcare delivery system. Study participants will be 200 higher-risk older adults (age 70-89 years with subjective cognitive complaints, low normal performance on cognitive screen, and â„ two modifiable risk factors targeted by our intervention) who will be recruited from selected primary care clinics of Kaiser Permanente Washington, oversampling people with non-white race or Hispanic ethnicity. Study participants will be randomly assigned to a two-year Alzheimer's risk reduction intervention (SMARRT) or a Health Education (HE) control. Randomization will be stratified by clinic, race/ethnicity (non-Hispanic white versus non-white or Hispanic), and age (70-79, 80-89). Participants randomized to the SMARRT group will work with a behavioral coach and nurse to develop a personalized plan related to their risk factors (poorly controlled hypertension, diabetes with evidence of hyper or hypoglycemia, depressive symptoms, poor sleep quality, contraindicated medications, physical inactivity, low cognitive stimulation, social isolation, poor diet, smoking). Participants in the HE control group will be mailed general health education information about these risk factors for AD. The primary outcome is two-year cognitive change on a cognitive test composite score. Secondary outcomes include: 1) improvement in targeted risk factors, 2) individual cognitive domain composite scores, 3) physical performance, 4) functional ability, 5) quality of life, and 6) incidence of mild cognitive impairment, AD, and dementia. Primary and secondary outcomes will be assessed in both groups at baseline and 6, 12, 18, and 24 months
Meta-analyses of deflazacort versus prednisone/prednisolone in patients with nonsense mutation Duchenne muscular dystrophy
Aim: Compare efficacies of deflazacort and prednisone/prednisolone in providing clinically meaningful delays in loss of physical milestones in patients with nonsense mutation Duchenne muscular dystrophy. Materials & methods: Placebo data from Phase IIb (ClinicalTrials.gov Identifier: NCT00592553) and ACT DMD (ClinicalTrials.gov Identifier: NCT01826487) ataluren nonsense mutation Duchenne muscular dystrophy clinical trials were retrospectively combined in meta-analyses (intent-to-treat population; for change from baseline to week 48 in 6-min walk distance [6MWD] and timed function tests). Results: Significant improvements in change in 6-min walk distance with deflazacort versus prednisone/prednisolone (least-squares mean difference 39.54 m [95% CI: 13.799, 65.286; p = 0.0026]). Significant and clinically meaningful improvements in 4-stair climb and 4-stair descend for deflazacort versus prednisone/prednisolone. Conclusion: Deflazacort provides clinically meaningful delays in loss of physical milestones over 48 weeks compared with prednisone/prednisolone for patients with nonsense mutation Duchenne muscular dystrophy
Evolution of dopant-induced helium nanoplasmas
Two-component nanoplasmas generated by strong-field ionization of doped
helium nanodroplets are studied in a pump-probe experiment using few-cycle
laser pulses in combination with molecular dynamics simulations. High yields of
helium ions and a pronounced, droplet size-dependent resonance structure in the
pump-probe transients reveal the evolution of the dopant-induced helium
nanoplasma. The pump-probe dynamics is interpreted in terms of strong inner
ionization by the pump pulse and resonant heating by the probe pulse which
controls the final charge states detected via the frustration of electron-ion
recombination
Field propagation-induced directionality of carrier-envelope phase-controlled photoemission from nanospheres
Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant in the acceleration process. Our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena
Genetic basis of thermal nociceptive sensitivity and brain weight in a BALB/c reduced complexity cross
Thermal nociception involves the transmission of temperature-related noxious information from the periphery to the CNS and is a heritable trait that could predict transition to persistent pain. Rodent forward genetics complement human studies by controlling genetic complexity and environmental factors, analysis of end point tissue, and validation of variants on appropriate genetic backgrounds. Reduced complexity crosses between nearly identical inbred substrains with robust trait differences can greatly facilitate unbiased discovery of novel genes and variants. We found BALB/cByJ mice showed enhanced sensitivity on the 53.5°C hot plate and mechanical stimulation in the von Frey test compared to BALB/cJ mice and replicated decreased gross brain weight in BALB/cByJ versus BALB/cJ. We then identified a quantitative trait locus (QTL) on chromosome 13 for hot plate sensitivity (LOD = 10.7; p < 0.001; peak = 56 Mb) and a QTL for brain weight on chromosome 5 (LOD = 8.7; p < 0.001). Expression QTL mapping of brain tissues identified H2afy (56.07 Mb) as the top transcript with the strongest association at the hot plate locus (FDR = 0.0002) and spliceome analysis identified differential exon usage within H2afy associated with the same locus. Whole brain proteomics further supported decreased H2AFY expression could underlie enhanced hot plate sensitivity, and identified ACADS as a candidate for reduced brain weight. To summarize, a BALB/c reduced complexity cross combined with multiple-omics approaches facilitated identification of candidate genes underlying thermal nociception and brain weight. These substrains provide a powerful, reciprocal platform for future validation of candidate variants
Field propagation-induced directionality of carrier-envelope phase-controlled photoemission from nanospheres
Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant in the acceleration process. Our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena.112926Ysciescopu
An all-solid-state laser source at 671 nm for cold atom experiments with lithium
We present an all solid-state narrow line-width laser source emitting
output power at delivered in a
diffraction-limited beam. The \linebreak source is based on a
fre-quency-doubled diode-end-linebreak pumped ring laser operating on the
transition in Nd:YVO. By using
periodically-poled po-tassium titanyl phosphate (ppKTP) in an external build-up
cavity, doubling efficiencies of up to 86% are obtained. Tunability of the
source over is accomplished. We demonstrate the suitability of
this robust frequency-stabilized light source for laser cooling of lithium
atoms. Finally a simplified design based on intra-cavity doubling is described
and first results are presented
Hypertension in Holmes County, Mississippi / CAC No. 138
Includes bibliographic references (p. 10-11)
Non-Local Configuration of Component Interfaces by Constraint Satisfaction
© 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s10601-020-09309-y.Service-oriented computing is the paradigm that utilises services as fundamental elements for developing applications. Service composition, where data consistency becomes especially important, is still a key challenge for service-oriented computing. We maintain that there is one aspect of Web service communication on the data conformance side that has so far escaped the researchers attention. Aggregation of networked services gives rise to long pipelines, or quasi-pipeline structures, where there is a profitable form of inheritance called flow inheritance. In its presence, interface reconciliation ceases to be a local procedure, and hence it requires distributed constraint satisfaction of a special kind. We propose a constraint language for this, and present a solver which implements it. In addition, our approach provides a binding between the language and C++, whereby the assignment to the variables found by the solver is automatically translated into a transformation of C++ code. This makes the C++ Web service context compliant without any further communication. Besides, it uniquely permits a very high degree of flexibility of a C++ coded Web service without making public any part of its source code.Peer reviewe
- âŠ