980 research outputs found
In vivo precision of the GE Lunar iDXA for the measurement of visceral adipose tissue in adults: the influence of body mass index.
CoreScan is a new software for the GE Lunar iDXA, which provides a quantification of visceral adipose tissue (VAT). The objective of this study was to determine the in vivo precision of CoreScan for the measurement of VAT mass in a heterogeneous group of adults. Forty-five adults (aged 34.6 (8.6) years), ranging widely in body mass index (BMI 26.0 (5.2) kg/m(2); 16.7-42.4 kg/m(2)), received two consecutive total body scans with repositioning. The sample was divided into two subgroups based on BMI, normal-weight and overweight/obese, for precision analyses. Subgroup analyses revealed that precision errors (RMSSD:%CV; root mean square standard deviation:% coefficient of variation) for VAT mass were 20.9 g:17.0% in the normal-weight group and 43.7 g:5.4% in overweight/obese groups. Our findings indicate that precision for DXA-VAT mass measurements increases with BMI, but caution should be used with %CV-derived precision error in normal BMI subjects.European Journal of Clinical Nutrition advance online publication, 15 October 2014; doi:10.1038/ejcn.2014.213
An experimental and computational analysis of buoyancy driven flows by laser sheet tomography, particle image velocimetry and computational fluid dynamics
This paper contains details of a three pronged investigation into the development of a buoyant jet impinging on a wall in a closed vessel. The development of the flow was measured experimentally by particle image velocimetry (PIV) and laser sheet tomography. The experimental results are compared with a computational model of the flow calculated by the computational fluid dynamics (CFD) package PHOENICS
Effect of Hand Positioning on DXA Total and Regional Bone and Body Composition Parameters, Precision Error, and Least Significant Change
Dual-energy X-ray absorptiometry (DXA) body composition measurements are performed in both clinical and research settings for estimations of total and regional fat mass, lean tissue mass, and bone mineral content. Subject positioning influences precision and positioning instructions vary between manufacturers. The aim of the study was to determine the effect of hand position and scan mode on regional and total body bone and body composition parameters and determine protocol-specific body composition precision errors. Thirty-eight healthy subjects (men; mean age: 27.1 ± 12.1 yr) received 4 consecutive total body GE-Lunar iDXA (enCORE v 15.0) scans with re-positioning, and scan mode was dependent on body size. Twenty-three subjects received scans in standard mode and 15 received scans in thick scan modes. Two scans per subject were conducted with subject hands prone and 2 with hands mid-prone. The precision error (root mean squared standard deviation; percentage coefficient of variation) and least significant change for each protocol were determined using the International Society for Clinical Densitometry calculator. Hands placed in the mid-prone position increased arm bone mineral density (BMD) (standard mode: 0.185 g*cm−2, thick mode: 0.265 g*cm−2; p < 0.05), total body BMD (standard mode: 0.051 g*cm−2, thick mode: 0.069 g*cm−2; p < 0.001), and total body BMD Z-score (standard mode: 0.5. thick mode: 0.7; p < 0.001). This was due to reductions in bone area and bone mineral content. In standard mode, hands mid-prone reduced fat mass (0.05 kg, p < 0.05) and increased lean mass (0.11 kg, p < 0.05). There were no differences in body composition for thick mode scans. Hands mid-prone reduced lean mass precision error at the arms, trunk, and total body (p < 0.01). DXA clinical and research centers are advised to maintain consistency in their hand positioning and scan mode protocols, and consideration should be given to the hand positioning used for reference data. As a best practice recommendation, published DXA-based studies and reports for clinic-based total body assessments should ensure that subject positioning is fully described
Symbolic Activities in Virtual Spaces
This paper presents an approach to combine concepts ofsymbolic acting and virtual storytelling with the support ofcooperative processes. We will motivate why symboliclanguages are relevant in the social context of awarenessapplications. We will describe different symbolicpresentations and illustrate their application in three differentprototypes
Repeatability of fractional flow reserve despite variations in systemic and coronary hemodynamics
Objectives
This study classified and quantified the variation in fractional flow reserve (FFR) due to fluctuations in systemic and coronary hemodynamics during intravenous adenosine infusion.
Background
Although FFR has become a key invasive tool to guide treatment, questions remain regarding its repeatability and stability during intravenous adenosine infusion because of systemic effects that can alter driving pressure and heart rate.
Methods
We reanalyzed data from the VERIFY (VERification of Instantaneous Wave-Free Ratio and Fractional Flow Reserve for the Assessment of Coronary Artery Stenosis Severity in EverydaY Practice) study, which enrolled consecutive patients who were infused with intravenous adenosine at 140 μg/kg/min and measured FFR twice. Raw phasic pressure tracings from the aorta (Pa) and distal coronary artery (Pd) were transformed into moving averages of Pd/Pa. Visual analysis grouped Pd/Pa curves into patterns of similar response. Quantitative analysis of the Pd/Pa curves identified the “smart minimum” FFR using a novel algorithm, which was compared with human core laboratory analysis.
Results
A total of 190 complete pairs came from 206 patients after exclusions. Visual analysis revealed 3 Pd/Pa patterns: “classic” (sigmoid) in 57%, “humped” (sigmoid with superimposed bumps of varying height) in 39%, and “unusual” (no pattern) in 4%. The Pd/Pa pattern repeated itself in 67% of patient pairs. Despite variability of Pd/Pa during the hyperemic period, the “smart minimum” FFR demonstrated excellent repeatability (bias −0.001, SD 0.018, paired p = 0.93, r2 = 98.2%, coefficient of variation = 2.5%). Our algorithm produced FFR values not significantly different from human core laboratory analysis (paired p = 0.43 vs. VERIFY; p = 0.34 vs. RESOLVE).
Conclusions
Intravenous adenosine produced 3 general patterns of Pd/Pa response, with associated variability in aortic and coronary pressure and heart rate during the hyperemic period. Nevertheless, FFR – when chosen appropriately – proved to be a highly reproducible value. Therefore, operators can confidently select the “smart minimum” FFR for patient care. Our results suggest that this selection process can be automated, yet comparable to human core laboratory analysis
The Polonnaruwa meteorite: oxygen isotope, crystalline and biological composition
Results of X-Ray Diffraction (XRD) analysis, Triple Oxygen Isotope analysis
and Scanning Electron Microscopic (SEM) studies are presented for stone
fragments recovered from the North Central Province of Sri Lanka following a
witnessed fireball event on 29 December 2012. The existence of numerous
nitrogen depleted highly carbonaceous fossilized biological structures fused
into the rock matrix is inconsistent with recent terrestrial contamination.
Oxygen isotope results compare well with those of CI and CI-like chondrites but
are inconsistent with the fulgurite hypothesis.Comment: 7 pages, 7 figures, 4 table
Contrasting mechanisms for crustal sulphur contamination of mafic magma: evidence from dyke and sill complexes from the British Palaeogene Igneous Province
This is the final version of the article. Available from the Geological Society via the DOI in this record.he addition of crustal sulphur to magma can trigger sulphide saturation, a process fundamental to the development of some Ni–Cu–PGE deposits. In the British Palaeogene Igneous Province, mafic and ultramafic magmas intrude a thick sedimentary sequence offering opportunities to elucidate mechanisms of magma–crust interaction in a setting with heterogeneous S isotope signatures. We present S-isotopic data from sills and dykes on the Isle of Skye. Sharp contrasts exist between variably light δ34S in Jurassic sedimentary sulphide (−35‰ to −10‰) and a local pristine magmatic δ34S signature of −2.3 ± 1.5‰. Flat-lying sills have restricted δ34S (−5‰ to 0‰) whereas steeply dipping dykes are more variable (−0‰ to −2‰). We suggest that the mechanism by which magma is intruded exerts a fundamental control on the degree of crustal contamination by volatile elements. Turbulent flow within narrow, steep magma conduits, discordant to sediments, and developed by brittle extension or dilation have maximum contamination potential. In contrast, sill-like conduits emplaced concordantly to sediments show little contamination by crustal S. The province is prospective for Ni–Cu–PGE mineralization analogous to the sill-hosted Noril’sk deposit, and Cu/Pd ratios of sills and dykes on Skye indicate that magmas had already reached S-saturation before reaching the present exposure level.Sulphur isotope analysis was undertaken at the Scottish Universities
Environment Research Centre (SUERC) and funded by an NERC Isotope
Geosciences Facilities Steering Committee grant (IP-1356-1112). H.S.R.H.
would like to acknowledge the financial support of the Natural Environment
Research Council (NERC) for funding this work (studentship NE/J50029X/1)
and open access publication. A.J.B. is funded by NERC funding of the Isotope
Community Support Facility at SUER
Highly syntenic regions in the genomes of soybean, Medicago truncatula, and Arabidopsis thaliana
BACKGROUND: Recent genome sequencing enables mega-base scale comparisons between related genomes. Comparisons between animals, plants, fungi, and bacteria demonstrate extensive synteny tempered by rearrangements. Within the legume plant family, glimpses of synteny have also been observed. Characterizing syntenic relationships in legumes is important in transferring knowledge from model legumes to crops that are important sources of protein, fixed nitrogen, and health-promoting compounds. RESULTS: We have uncovered two large soybean regions exhibiting synteny with M. truncatula and with a network of segmentally duplicated regions in Arabidopsis. In all, syntenic regions comprise over 500 predicted genes spanning 3 Mb. Up to 75% of soybean genes are colinear with M. truncatula, including one region in which 33 of 35 soybean predicted genes with database support are colinear to M. truncatula. In some regions, 60% of soybean genes share colinearity with a network of A. thaliana duplications. One region is especially interesting because this 500 kbp segment of soybean is syntenic to two paralogous regions in M. truncatula on different chromosomes. Phylogenetic analysis of individual genes within these regions demonstrates that one is orthologous to the soybean region, with which it also shows substantially denser synteny and significantly lower levels of synonymous nucleotide substitutions. The other M. truncatula region is inferred to be paralogous, presumably resulting from a duplication event preceding speciation. CONCLUSION: The presence of well-defined M. truncatula segments showing orthologous and paralogous relationships with soybean allows us to explore the evolution of contiguous genomic regions in the context of ancient genome duplication and speciation events
- …