2,838 research outputs found

    Population III star formation in a Lambda CDM universe, I: The effect of formation redshift and environment on protostellar accretion rate

    Get PDF
    (abridged) We perform 12 extremely high resolution adaptive mesh refinement cosmological hydrodynamic simulations of Population III star formation in a Lambda CDM universe, varying the box size and large-scale structure, to understand systematic effects in the formation of primordial protostellar cores. We find results that are qualitatively similar to those observed previously. We observe that the threshold halo mass for formation of a Population III protostar does not evolve significantly with time in the redshift range studied (33 > z > 19) but exhibits substantial scatter due to different halo assembly histories: Halos which assembled more slowly develop cooling cores at lower mass than those that assemble more rapidly, in agreement with Yoshida et al. (2003). We do, however, observe significant evolution in the accretion rates of Population III protostars with redshift, with objects that form later having higher maximum accretion rates, with a variation of two orders of magnitude (10^-4 - 10^-2 Msolar/year). This can be explained by considering the evolving virial properties of the halos with redshift and the physics of molecular hydrogen formation at low densities. Our result implies that the mass distribution of Population III stars inferred from their accretion rates may be broader than previously thought, and may evolve with redshift. Finally, we observe that our collapsing protostellar cloud cores do not fragment, consistent with previous results, which suggests that Population III stars which form in halos of mass 10^5 - 10^6 Msun always form in isolation.Comment: Accepted by The Astrophysical Journal. Some minor changes. 65 pages, 3 tables, 21 figures (3 color). To appear in January 1, 2007 issu

    Direct measurement of molecular stiffness and damping in confined water layers

    Get PDF
    We present {\em direct} and {\em linear} measurements of the normal stiffness and damping of a confined, few molecule thick water layer. The measurements were obtained by use of a small amplitude (0.36 A˚\textrm{\AA}), off-resonance Atomic Force Microscopy (AFM) technique. We measured stiffness and damping oscillations revealing up to 7 layers separated by 2.56 ±\pm 0.20 A˚\textrm{\AA}. Relaxation times could also be calculated and were found to indicate a significant slow-down of the dynamics of the system as the confining separation was reduced. We found that the dynamics of the system is determined not only by the interfacial pressure, but more significantly by solvation effects which depend on the exact separation of tip and surface. Thus ` solidification\rq seems to not be merely a result of pressure and confinement, but depends strongly on how commensurate the confining cavity is with the molecule size. We were able to model the results by starting from the simple assumption that the relaxation time depends linearly on the film stiffness.Comment: 7 pages, 6 figures, will be submitted to PR

    Extensible Component Based Architecture for FLASH, A Massively Parallel, Multiphysics Simulation Code

    Full text link
    FLASH is a publicly available high performance application code which has evolved into a modular, extensible software system from a collection of unconnected legacy codes. FLASH has been successful because its capabilities have been driven by the needs of scientific applications, without compromising maintainability, performance, and usability. In its newest incarnation, FLASH3 consists of inter-operable modules that can be combined to generate different applications. The FLASH architecture allows arbitrarily many alternative implementations of its components to co-exist and interchange with each other, resulting in greater flexibility. Further, a simple and elegant mechanism exists for customization of code functionality without the need to modify the core implementation of the source. A built-in unit test framework providing verifiability, combined with a rigorous software maintenance process, allow the code to operate simultaneously in the dual mode of production and development. In this paper we describe the FLASH3 architecture, with emphasis on solutions to the more challenging conflicts arising from solver complexity, portable performance requirements, and legacy codes. We also include results from user surveys conducted in 2005 and 2007, which highlight the success of the code.Comment: 33 pages, 7 figures; revised paper submitted to Parallel Computin

    Observation and Modeling of the Solar Transition Region: II. Solutions of the Quasi-Static Loop Model

    Get PDF
    In the present work we undertake a study of the quasi-static loop model and the observational consequences of the various solutions found. We obtain the most general solutions consistent with certain initial conditions. Great care is exercised in choosing these conditions to be physically plausible (motivated by observations). We show that the assumptions of previous quasi-static loop models, such as the models of Rosner, Tucker and Vaiana (1978) and Veseckey, Antiochos and Underwood (1979), are not necessarily valid for small loops at transition region temperatures. We find three general classes of solutions for the quasi-static loop model, which we denote, radiation dominated loops, conduction dominated loops and classical loops. These solutions are then compared with observations. Departures from the classical scaling law of RTV are found for the solutions obtained. It is shown that loops of the type that we model here can make a significant contribution to lower transition region emission via thermal conduction from the upper transition region.Comment: 30 pages, 3 figures, Submitted to ApJ, Microsoft Word File 6.0/9

    Educational Attainment Moderates the Association Between Hippocampal Volumes and Memory Performances in Healthy Older Adults

    Get PDF
    Objective: To examine whether educational attainment, as a proxy of cognitive reserve, moderated the association between hippocampal volumes and episodic verbal memory performances in healthy older adults.Methods: Data from 76 community dwelling older adults were included in the present study. Measures of hippocampal volumes (total, left, and right) were obtained using FreeSurfer software. Immediate and delayed verbal recall scores were derived from performances on the California Verbal Learning Test-Second Edition and the Wechsler Memory Scale- Third Edition. Educational attainment was defined by years of education. Linear regression analyses were performed using immediate and delayed recall as dependent variables and hippocampal volumes, years of education, and their interaction terms as independent variables. All analyses were controlled for age, sex, depression, and health status.Results: Total and left Hippocampal volumes had a positive main effect on delayed recall only. Additionally, the interaction between total, left, and right hippocampal volumes and education was a significant predictor for delayed recall performance but not for immediate recall performance. The positive association between hippocampal volumes and delayed recall was greatest in those with more years of education.Conclusion: Larger hippocampal volumes were associated with better delayed verbal recall and the effect on delayed recall was greatest in those with more years of education. Having higher levels of education, or cognitive reserve, may enable individuals to capitalize on greater structural integrity in the hippocampus to support delayed recall in old age. However, longitudinal research is needed to investigate the directionality of these associations
    • …
    corecore